Cargando…
Non-Fatal Drowning Risk Prediction Based on Stacking Ensemble Algorithm
Drowning is a major public health problem and a leading cause of death in children living in developing countries. We seek better machine learning (ML) algorithms to provide a novel risk-assessment insight on non-fatal drowning prediction. The data on non-fatal drowning were collected in Qingyuan ci...
Autores principales: | Xie, Xinshan, Li, Zhixing, Xu, Haofeng, Peng, Dandan, Yin, Lihua, Meng, Ruilin, Wu, Wei, Ma, Wenjun, Chen, Qingsong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9498184/ https://www.ncbi.nlm.nih.gov/pubmed/36138692 http://dx.doi.org/10.3390/children9091383 |
Ejemplares similares
-
An exploratory model for the non-fatal drowning risks in children in Guangdong, China
por: Xu, Haofeng, et al.
Publicado: (2019) -
Hybrid stacked ensemble combined with genetic algorithms for diabetes prediction
por: Abdollahi, Jafar, et al.
Publicado: (2022) -
Efficacy prediction of noninvasive ventilation failure based on the stacking ensemble algorithm and autoencoder
por: Liang, Na, et al.
Publicado: (2022) -
Using an innovative stacked ensemble algorithm for the accurate prediction of preterm birth
por: Ramalingam, Pari, et al.
Publicado: (2019) -
Understanding the full burden of drowning: a retrospective, cross-sectional analysis of fatal and non-fatal drowning in Australia
por: Peden, Amy E, et al.
Publicado: (2018)