Cargando…
Automatic Bone Segmentation from MRI for Real-Time Knee Tracking in Fluoroscopic Imaging
Recent progress in real-time tracking of knee bone structures from fluoroscopic imaging using CT templates has opened the door to studying knee kinematics to improve our understanding of patellofemoral syndrome. The problem with CT imaging is that it exposes patients to extra ionising radiation, whi...
Autores principales: | Robert, Brenden, Boulanger, Pierre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9498193/ https://www.ncbi.nlm.nih.gov/pubmed/36140633 http://dx.doi.org/10.3390/diagnostics12092228 |
Ejemplares similares
-
Automatic hyoid bone detection in fluoroscopic images using deep learning
por: Zhang, Zhenwei, et al.
Publicado: (2018) -
Fully Automatic Knee Bone Detection and Segmentation on Three-Dimensional MRI
por: Almajalid, Rania, et al.
Publicado: (2022) -
Automatic Segmentation of MRI Images in Dynamic Programming Mode
por: Marusina, Mariya Y, et al.
Publicado: (2018) -
Cross‐Cohort Automatic Knee MRI Segmentation With Multi‐Planar U‐Nets
por: Perslev, Mathias, et al.
Publicado: (2021) -
Automatic Myotendinous Junction Tracking in Ultrasound Images with Phase-Based Segmentation
por: Zhou, Guang-Quan, et al.
Publicado: (2018)