Cargando…

Convolutional Neural Network Performance for Sella Turcica Segmentation and Classification Using CBCT Images

The present study aims to validate the diagnostic performance and evaluate the reliability of an artificial intelligence system based on the convolutional neural network method for the morphological classification of sella turcica in CBCT (cone-beam computed tomography) images. In this retrospective...

Descripción completa

Detalles Bibliográficos
Autores principales: Duman, Şuayip Burak, Syed, Ali Z., Celik Ozen, Duygu, Bayrakdar, İbrahim Şevki, Salehi, Hassan S., Abdelkarim, Ahmed, Celik, Özer, Eser, Gözde, Altun, Oğuzhan, Orhan, Kaan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9498199/
https://www.ncbi.nlm.nih.gov/pubmed/36140645
http://dx.doi.org/10.3390/diagnostics12092244
Descripción
Sumario:The present study aims to validate the diagnostic performance and evaluate the reliability of an artificial intelligence system based on the convolutional neural network method for the morphological classification of sella turcica in CBCT (cone-beam computed tomography) images. In this retrospective study, sella segmentation and classification models (CranioCatch, Eskisehir, Türkiye) were applied to sagittal slices of CBCT images, using PyTorch supported by U-Net and TensorFlow 1, and we implemented the GoogleNet Inception V3 algorithm. The AI models achieved successful results for sella turcica segmentation of CBCT images based on the deep learning models. The sensitivity, precision, and F-measure values were 1.0, 1.0, and 1.0, respectively, for segmentation of sella turcica in sagittal slices of CBCT images. The sensitivity, precision, accuracy, and F1-score were 1.0, 0.95, 0.98, and 0.84, respectively, for sella-turcica-flattened classification; 0.95, 0.83, 0.92, and 0.88, respectively, for sella-turcica-oval classification; 0.75, 0.94, 0.90, and 0.83, respectively, for sella-turcica-round classification. It is predicted that detecting anatomical landmarks with orthodontic importance, such as the sella point, with artificial intelligence algorithms will save time for orthodontists and facilitate diagnosis.