Cargando…
On the Simulation of Ultra-Sparse-View and Ultra-Low-Dose Computed Tomography with Maximum a Posteriori Reconstruction Using a Progressive Flow-Based Deep Generative Model
Ultra-sparse-view computed tomography (CT) algorithms can reduce radiation exposure for patients, but these algorithms lack an explicit cycle consistency loss minimization and an explicit log-likelihood maximization in testing. Here, we propose X2CT-FLOW for the maximum a posteriori (MAP) reconstruc...
Autores principales: | Shibata, Hisaichi, Hanaoka, Shouhei, Nomura, Yukihiro, Nakao, Takahiro, Takenaga, Tomomi, Hayashi, Naoto, Abe, Osamu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9498355/ https://www.ncbi.nlm.nih.gov/pubmed/36136875 http://dx.doi.org/10.3390/tomography8050179 |
Ejemplares similares
-
Unsupervised Deep Anomaly Detection in Chest Radiographs
por: Nakao, Takahiro, et al.
Publicado: (2021) -
Anomaly detection in chest (18)F-FDG PET/CT by Bayesian deep learning
por: Nakao, Takahiro, et al.
Publicado: (2022) -
Automatic detection of actionable radiology reports using bidirectional encoder representations from transformers
por: Nakamura, Yuta, et al.
Publicado: (2021) -
Characterization of Brain Volume Changes in Aging Individuals With Normal Cognition Using Serial Magnetic Resonance Imaging
por: Fujita, Shohei, et al.
Publicado: (2023) -
Significance of FDG–PET standardized uptake values in predicting thyroid disease
por: Kikuchi, Tomohiro, et al.
Publicado: (2022)