Cargando…
Evaluating Compressed SENSE (CS) MRI Metal Artifact Reduction Using Pig L-Spine Phantom and Transplant Patients: Focused on the CS-SEMAC (SPIR), mDixon(O-MAR) and STIR Techniques
This study evaluates the clinical usefulness of the images obtained after applying mDixon (O-MAR), CS-SEMAC (SPIR), and STIR techniques to Pig L-Spine Phantom and transplant patients according to the difference in the reduction in metal artifacts and provides the optimal MAR image technique. This st...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9498365/ https://www.ncbi.nlm.nih.gov/pubmed/36136888 http://dx.doi.org/10.3390/tomography8050192 |
_version_ | 1784794740513832960 |
---|---|
author | Goo, Eun-Hoe Kim, Sung-Soo |
author_facet | Goo, Eun-Hoe Kim, Sung-Soo |
author_sort | Goo, Eun-Hoe |
collection | PubMed |
description | This study evaluates the clinical usefulness of the images obtained after applying mDixon (O-MAR), CS-SEMAC (SPIR), and STIR techniques to Pig L-Spine Phantom and transplant patients according to the difference in the reduction in metal artifacts and provides the optimal MAR image technique. This study was conducted with Phantom and 30 transplant patients who had an implant on the L-Spine (22 men, 8 women, mean age: 64.2 ± 12.98). All data analyzed were evaluated, using Philips Ingenia 3.0T CX. As pulse sequences, applied to the analysis, mDixon (O-MAR), CS-SEMAC (SPIR), and STIR were used. As the coil used to obtain data, the dStream Head Spine Coil was used. When tested directly applying to the transplant patients in the conditions the same as for the Phantom, as for the MAR effect of T1 and T2 images, the SNR value showed the highest effect on the increase in the signal in T1, T2 CS-SEMAC (SPIR), followed by mDixon (O-MAR) and STIR, which was the same result as the Phantom (p < 0.05). In addition, in the results of the histogram measurement in both of the subjects, Phantom and transplant patients, the count of T1, the T2 Sagittal image was the highest in T1, T2 STIR, followed by T1, T2 mDixon (O-MAR) and T1, and T2 CS-SEMAC (SPIR). As a result of the qualitative analysis, the quality was the best in T2 CS-SEMAC(SPIR) (c), followed by mDixon (O-MAR) (b) and T2 STIR (a). In conclusion, when the MAR effect on the Pig L-spine Phantom and Transplant patients was compared, it was noted that the CS-SEMAC (SPIR) technique was the most excellent in the following order: STIR < mDixon (O-MAR) < CS-SEMAC (SPIR). |
format | Online Article Text |
id | pubmed-9498365 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94983652022-09-23 Evaluating Compressed SENSE (CS) MRI Metal Artifact Reduction Using Pig L-Spine Phantom and Transplant Patients: Focused on the CS-SEMAC (SPIR), mDixon(O-MAR) and STIR Techniques Goo, Eun-Hoe Kim, Sung-Soo Tomography Article This study evaluates the clinical usefulness of the images obtained after applying mDixon (O-MAR), CS-SEMAC (SPIR), and STIR techniques to Pig L-Spine Phantom and transplant patients according to the difference in the reduction in metal artifacts and provides the optimal MAR image technique. This study was conducted with Phantom and 30 transplant patients who had an implant on the L-Spine (22 men, 8 women, mean age: 64.2 ± 12.98). All data analyzed were evaluated, using Philips Ingenia 3.0T CX. As pulse sequences, applied to the analysis, mDixon (O-MAR), CS-SEMAC (SPIR), and STIR were used. As the coil used to obtain data, the dStream Head Spine Coil was used. When tested directly applying to the transplant patients in the conditions the same as for the Phantom, as for the MAR effect of T1 and T2 images, the SNR value showed the highest effect on the increase in the signal in T1, T2 CS-SEMAC (SPIR), followed by mDixon (O-MAR) and STIR, which was the same result as the Phantom (p < 0.05). In addition, in the results of the histogram measurement in both of the subjects, Phantom and transplant patients, the count of T1, the T2 Sagittal image was the highest in T1, T2 STIR, followed by T1, T2 mDixon (O-MAR) and T1, and T2 CS-SEMAC (SPIR). As a result of the qualitative analysis, the quality was the best in T2 CS-SEMAC(SPIR) (c), followed by mDixon (O-MAR) (b) and T2 STIR (a). In conclusion, when the MAR effect on the Pig L-spine Phantom and Transplant patients was compared, it was noted that the CS-SEMAC (SPIR) technique was the most excellent in the following order: STIR < mDixon (O-MAR) < CS-SEMAC (SPIR). MDPI 2022-09-15 /pmc/articles/PMC9498365/ /pubmed/36136888 http://dx.doi.org/10.3390/tomography8050192 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Goo, Eun-Hoe Kim, Sung-Soo Evaluating Compressed SENSE (CS) MRI Metal Artifact Reduction Using Pig L-Spine Phantom and Transplant Patients: Focused on the CS-SEMAC (SPIR), mDixon(O-MAR) and STIR Techniques |
title | Evaluating Compressed SENSE (CS) MRI Metal Artifact Reduction Using Pig L-Spine Phantom and Transplant Patients: Focused on the CS-SEMAC (SPIR), mDixon(O-MAR) and STIR Techniques |
title_full | Evaluating Compressed SENSE (CS) MRI Metal Artifact Reduction Using Pig L-Spine Phantom and Transplant Patients: Focused on the CS-SEMAC (SPIR), mDixon(O-MAR) and STIR Techniques |
title_fullStr | Evaluating Compressed SENSE (CS) MRI Metal Artifact Reduction Using Pig L-Spine Phantom and Transplant Patients: Focused on the CS-SEMAC (SPIR), mDixon(O-MAR) and STIR Techniques |
title_full_unstemmed | Evaluating Compressed SENSE (CS) MRI Metal Artifact Reduction Using Pig L-Spine Phantom and Transplant Patients: Focused on the CS-SEMAC (SPIR), mDixon(O-MAR) and STIR Techniques |
title_short | Evaluating Compressed SENSE (CS) MRI Metal Artifact Reduction Using Pig L-Spine Phantom and Transplant Patients: Focused on the CS-SEMAC (SPIR), mDixon(O-MAR) and STIR Techniques |
title_sort | evaluating compressed sense (cs) mri metal artifact reduction using pig l-spine phantom and transplant patients: focused on the cs-semac (spir), mdixon(o-mar) and stir techniques |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9498365/ https://www.ncbi.nlm.nih.gov/pubmed/36136888 http://dx.doi.org/10.3390/tomography8050192 |
work_keys_str_mv | AT gooeunhoe evaluatingcompressedsensecsmrimetalartifactreductionusingpiglspinephantomandtransplantpatientsfocusedonthecssemacspirmdixonomarandstirtechniques AT kimsungsoo evaluatingcompressedsensecsmrimetalartifactreductionusingpiglspinephantomandtransplantpatientsfocusedonthecssemacspirmdixonomarandstirtechniques |