Cargando…
A Rapid Prediction Method of Moisture Content for Green Tea Fixation Based on WOA-Elman
Fixation is the most critical step in the green tea process. Hence, this study developed a rapid and accurate moisture content detection for the green tea fixation process based on near-infrared spectroscopy and computer vision. Specifically, we created a quantitative moisture content prediction mod...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9498461/ https://www.ncbi.nlm.nih.gov/pubmed/36141056 http://dx.doi.org/10.3390/foods11182928 |
Sumario: | Fixation is the most critical step in the green tea process. Hence, this study developed a rapid and accurate moisture content detection for the green tea fixation process based on near-infrared spectroscopy and computer vision. Specifically, we created a quantitative moisture content prediction model appropriate for the processing of green tea fixation. First, we collected spectrum and image information of green tea fixation leaves, utilizing near-infrared spectroscopy and computer vision. Then, we applied the partial least squares regression (PLSR), support vector regression (SVR), Elman neural network (ENN), and Elman neural network based on whale optimization algorithm (WOA-ENN) methods to build the prediction models for single data (data from a single sensor) and mid-level data fusion, respectively. The results revealed that the mid-level data fusion strategy combined with the WOA-ENN model attained the best effect. Namely, the prediction set correlation coefficient (Rp) was 0.9984, the root mean square error of prediction (RMSEP) was 0.0090, and the relative percent deviation (RPD) was 17.9294, highlighting the model’s excellent predictive performance. Thus, this study identified the feasibility of predicting the moisture content in the process of green tea fixation by miniaturized near-infrared spectroscopy. Moreover, in establishing the model, the whale optimization algorithm was used to overcome the defect whereby the Elman neural network falls into the local optimum. In general, this study provides technical support for rapid and accurate moisture content detection in green tea fixation. |
---|