Cargando…
Survival Analysis with High-Dimensional Omics Data Using a Threshold Gradient Descent Regularization-Based Neural Network Approach
Analysis of data with a censored survival response and high-dimensional omics measurements is now common. Most of the existing analyses are based on specific (semi)parametric models, in particular the Cox model. Such analyses may be limited by not having sufficient flexibility, for example, in accom...
Autores principales: | Fan, Yu, Zhang, Sanguo, Ma, Shuangge |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9498566/ https://www.ncbi.nlm.nih.gov/pubmed/36140842 http://dx.doi.org/10.3390/genes13091674 |
Ejemplares similares
-
Iterative deep neural networks based on proximal gradient descent for image restoration
por: Lv, Ting, et al.
Publicado: (2022) -
Stochastic gradient descent optimisation for convolutional neural network for medical image segmentation
por: Nagendram, Sanam, et al.
Publicado: (2023) -
Limited-Memory Fast Gradient Descent Method for Graph Regularized Nonnegative Matrix Factorization
por: Guan, Naiyang, et al.
Publicado: (2013) -
Complexity control by gradient descent in deep networks
por: Poggio, Tomaso, et al.
Publicado: (2020) -
Dynamics of stochastic gradient descent for two-layer neural networks in the teacher–student setup
por: Goldt, Sebastian, et al.
Publicado: (2020)