Cargando…

Design and Optimization of In Situ Gelling Mucoadhesive Eye Drops Containing Dexamethasone

Poor bioavailability of eye drops is a well-known issue, which can be improved by increasing the residence time on the eye surface and the penetration of the active pharmaceutical ingredient (API). This study aims to formulate in situ gelling mucoadhesive ophthalmic preparations. To increase the res...

Descripción completa

Detalles Bibliográficos
Autores principales: Szalai, Boglárka, Jójárt-Laczkovich, Orsolya, Kovács, Anita, Berkó, Szilvia, Balogh, György Tibor, Katona, Gábor, Budai-Szűcs, Mária
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9498616/
https://www.ncbi.nlm.nih.gov/pubmed/36135271
http://dx.doi.org/10.3390/gels8090561
Descripción
Sumario:Poor bioavailability of eye drops is a well-known issue, which can be improved by increasing the residence time on the eye surface and the penetration of the active pharmaceutical ingredient (API). This study aims to formulate in situ gelling mucoadhesive ophthalmic preparations. To increase the residence time, the formulations were based on a thermosensitive polymer (Poloxamer 407 (P407)) and were combined with two types of mucoadhesive polymers. Dexamethasone (DXM) was solubilized by complexation with cyclodextrins (CD). The effect of the composition on the gel structure, mucoadhesion, dissolution, and permeability was investigated with 3(3) full factorial design. These parameters of the gels were measured by rheological studies, tensile test, dialysis membrane diffusion, and in vitro permeability assay. The dissolution and permeability of the gels were also compared with DXM suspension and CD-DXM solution. The gelation is strongly determined by P407; however, the mucoadhesive polymers also influenced it. Mucoadhesion increased with the polymer concentration. The first phase of drug release was similar to that of the CD-DXM solution, then it became prolonged. The permeability of DXM was significantly improved. The factorial design helped to identify the most important factors, thereby facilitating the formulation of a suitable carrier for the CD-DXM complex.