Cargando…

Association of the ACTN3 rs1815739 Polymorphism with Physical Performance and Injury Incidence in Professional Women Football Players

The p.R577X polymorphism (rs1815739) in the ACTN3 gene causes individuals with the XX genotype to be deficient in functional α-actinin-3. Previous investigations have found that XX athletes are more prone to suffer non-contact muscle injuries, in comparison with RR and RX athletes who produce a func...

Descripción completa

Detalles Bibliográficos
Autores principales: Del Coso, Juan, Rodas, Gil, Buil, Miguel Ángel, Sánchez-Sánchez, Javier, López, Pedro, González-Ródenas, Joaquín, Gasulla-Anglés, Pablo, López-Samanes, Álvaro, Hernández-Sánchez, Sergio, Iztueta, Ane, Moreno-Pérez, Víctor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9498709/
https://www.ncbi.nlm.nih.gov/pubmed/36140803
http://dx.doi.org/10.3390/genes13091635
Descripción
Sumario:The p.R577X polymorphism (rs1815739) in the ACTN3 gene causes individuals with the XX genotype to be deficient in functional α-actinin-3. Previous investigations have found that XX athletes are more prone to suffer non-contact muscle injuries, in comparison with RR and RX athletes who produce a functional α-actinin-3 in their fast-twitch fibers. This investigation aimed to determine the influence of the ACTN3 R577X polymorphism on physical performance and injury incidence of players competing in the women’s Spanish first division of football (soccer). Using a cross-sectional experiment, football-specific performance and epidemiology of non-contact football-related injuries were recorded in a group of 191 professional football players. ACTN3 R577X genotype was obtained for each player using genomic DNA samples obtained through buccal swabs. A battery of physical tests, including a countermovement jump, a 20 m sprint test, the sit-and-reach test and ankle dorsiflexion, were performed during the preseason. Injury incidence and characteristics of non-contact injuries were obtained according to the International Olympic Committee (IOC) statement for one season. From the study sample, 28.3% of players had the RR genotype, 52.9% had the RX genotype, and 18.8% had the XX genotype. Differences among genotypes were identified with one-way analysis of variance (numerical variables) or chi-square tests (categorical variables). Jump height (p = 0.087), sprint time (p = 0.210), sit-and-reach distance (p = 0.361), and dorsiflexion in the right (p = 0.550) and left ankle (p = 0.992) were similar in RR, RX, and XX football players. A total of 356 non-contact injuries were recorded in 144 football players while the remaining 47 did not sustain any non-contact injuries during the season. Injury incidence was 10.4 ± 8.6, 8.2 ± 5.7, and 8.9 ± 5.3 injuries per/1000 h of football exposure, without differences among genotypes (p = 0.222). Injury rates during training (from 3.6 ± 3.7 to 4.8 ± 2.1 injuries per/1000 h of training exposure, p = 0.100) and match (from 47.8 ± 9.5 to 54.1 ± 6.3 injuries per/1000 h of match exposure, p = 0.209) were also similar in RR, RX, and XX football players. The ACTN3 genotype did not affect the mode of onset, the time needed to return to play, the type of injury, or the distribution of body locations of the injuries. In summary, women football players with different genotypes of the p.R577X ACTN3 polymorphism had similar values of football-specific performance and injury incidence. From a practical perspective, the ACTN3 genotyping may not be useful to predict performance or injury incidence in professional women football players.