Cargando…
Surface Defect Detection of Fresh-Cut Cauliflowers Based on Convolutional Neural Network with Transfer Learning
A fresh-cut cauliflower surface defect detection and classification model based on a convolutional neural network with transfer learning is proposed to address the low efficiency of the traditional manual detection of fresh-cut cauliflower surface defects. Four thousand, seven hundred and ninety ima...
Autores principales: | Li, Yaodi, Xue, Jianxin, Wang, Kai, Zhang, Mingyue, Li, Zezhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9498786/ https://www.ncbi.nlm.nih.gov/pubmed/36141042 http://dx.doi.org/10.3390/foods11182915 |
Ejemplares similares
-
Effects of the Use of Different Temperature and Calcium Chloride Treatments during Storage on the Quality of Fresh-Cut “Xuebai” Cauliflowers
por: Mu, Bingyu, et al.
Publicado: (2022) -
Bioactive Compounds and Antioxidant Activity of Fresh and Processed White Cauliflower
por: Ahmed, Fouad A., et al.
Publicado: (2013) -
Enhancement of Bioactive Constituents in Fresh Cauliflower By-Products in Challenging Climate Conditions
por: Collado-González, Jacinta, et al.
Publicado: (2022) -
A Compact Convolutional Neural Network for Surface Defect Inspection
por: Huang, Yibin, et al.
Publicado: (2020) -
Cauliflower Cancer
Publicado: (1894)