Cargando…
A Feasibility Study on Proton Range Monitoring Using (13)N Peak in Inhomogeneous Targets
Proton irradiations are highly sensitive to spatial variations, mainly due to their high linear energy transfer (LET) and densely ionizing nature. In realistic clinical applications, the targets of ionizing radiation are inhomogeneous in terms of geometry and chemical composition (i.e., organs in th...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9498793/ https://www.ncbi.nlm.nih.gov/pubmed/36136889 http://dx.doi.org/10.3390/tomography8050193 |
_version_ | 1784794848424886272 |
---|---|
author | Islam, Md. Rafiqul Shahmohammadi Beni, Mehrdad Inamura, Akihito Şafakattı, Nursel Miyake, Masayasu Rahman, Mahabubur Haque, Abul Kalam Fazlul Ito, Shigeki Gotoh, Shinichi Yamaya, Taiga Watabe, Hiroshi |
author_facet | Islam, Md. Rafiqul Shahmohammadi Beni, Mehrdad Inamura, Akihito Şafakattı, Nursel Miyake, Masayasu Rahman, Mahabubur Haque, Abul Kalam Fazlul Ito, Shigeki Gotoh, Shinichi Yamaya, Taiga Watabe, Hiroshi |
author_sort | Islam, Md. Rafiqul |
collection | PubMed |
description | Proton irradiations are highly sensitive to spatial variations, mainly due to their high linear energy transfer (LET) and densely ionizing nature. In realistic clinical applications, the targets of ionizing radiation are inhomogeneous in terms of geometry and chemical composition (i.e., organs in the human body). One of the main methods for proton range monitoring is to utilize the production of proton induced positron emitting radionuclides; these could be measured precisely with positron emission tomography (PET) systems. One main positron emitting radionuclide that could be used for proton range monitoring and verification was found to be (13)N that produces a peak close to the Bragg peak. In the present work, we have employed the Monte Carlo method and Spectral Analysis (SA) technique to investigate the feasibility of utilizing the (13)N peak for proton range monitoring and verification in inhomogeneous targets. Two different phantom types, namely, (1) ordinary slab and (2) MIRD anthropomorphic phantoms, were used. We have found that the generated (13)N peak in such highly inhomogeneous targets (ordinary slab and human phantom) is close to the actual Bragg peak, when irradiated by incident proton beam. The feasibility of using the SA technique to estimate the distribution of positron emitter was also investigated. The current findings and the developed tools in the present work would be helpful in proton range monitoring and verification in realistic clinical radiation therapy using proton beams. |
format | Online Article Text |
id | pubmed-9498793 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94987932022-09-23 A Feasibility Study on Proton Range Monitoring Using (13)N Peak in Inhomogeneous Targets Islam, Md. Rafiqul Shahmohammadi Beni, Mehrdad Inamura, Akihito Şafakattı, Nursel Miyake, Masayasu Rahman, Mahabubur Haque, Abul Kalam Fazlul Ito, Shigeki Gotoh, Shinichi Yamaya, Taiga Watabe, Hiroshi Tomography Article Proton irradiations are highly sensitive to spatial variations, mainly due to their high linear energy transfer (LET) and densely ionizing nature. In realistic clinical applications, the targets of ionizing radiation are inhomogeneous in terms of geometry and chemical composition (i.e., organs in the human body). One of the main methods for proton range monitoring is to utilize the production of proton induced positron emitting radionuclides; these could be measured precisely with positron emission tomography (PET) systems. One main positron emitting radionuclide that could be used for proton range monitoring and verification was found to be (13)N that produces a peak close to the Bragg peak. In the present work, we have employed the Monte Carlo method and Spectral Analysis (SA) technique to investigate the feasibility of utilizing the (13)N peak for proton range monitoring and verification in inhomogeneous targets. Two different phantom types, namely, (1) ordinary slab and (2) MIRD anthropomorphic phantoms, were used. We have found that the generated (13)N peak in such highly inhomogeneous targets (ordinary slab and human phantom) is close to the actual Bragg peak, when irradiated by incident proton beam. The feasibility of using the SA technique to estimate the distribution of positron emitter was also investigated. The current findings and the developed tools in the present work would be helpful in proton range monitoring and verification in realistic clinical radiation therapy using proton beams. MDPI 2022-09-15 /pmc/articles/PMC9498793/ /pubmed/36136889 http://dx.doi.org/10.3390/tomography8050193 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Islam, Md. Rafiqul Shahmohammadi Beni, Mehrdad Inamura, Akihito Şafakattı, Nursel Miyake, Masayasu Rahman, Mahabubur Haque, Abul Kalam Fazlul Ito, Shigeki Gotoh, Shinichi Yamaya, Taiga Watabe, Hiroshi A Feasibility Study on Proton Range Monitoring Using (13)N Peak in Inhomogeneous Targets |
title | A Feasibility Study on Proton Range Monitoring Using (13)N Peak in Inhomogeneous Targets |
title_full | A Feasibility Study on Proton Range Monitoring Using (13)N Peak in Inhomogeneous Targets |
title_fullStr | A Feasibility Study on Proton Range Monitoring Using (13)N Peak in Inhomogeneous Targets |
title_full_unstemmed | A Feasibility Study on Proton Range Monitoring Using (13)N Peak in Inhomogeneous Targets |
title_short | A Feasibility Study on Proton Range Monitoring Using (13)N Peak in Inhomogeneous Targets |
title_sort | feasibility study on proton range monitoring using (13)n peak in inhomogeneous targets |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9498793/ https://www.ncbi.nlm.nih.gov/pubmed/36136889 http://dx.doi.org/10.3390/tomography8050193 |
work_keys_str_mv | AT islammdrafiqul afeasibilitystudyonprotonrangemonitoringusing13npeakininhomogeneoustargets AT shahmohammadibenimehrdad afeasibilitystudyonprotonrangemonitoringusing13npeakininhomogeneoustargets AT inamuraakihito afeasibilitystudyonprotonrangemonitoringusing13npeakininhomogeneoustargets AT safakattınursel afeasibilitystudyonprotonrangemonitoringusing13npeakininhomogeneoustargets AT miyakemasayasu afeasibilitystudyonprotonrangemonitoringusing13npeakininhomogeneoustargets AT rahmanmahabubur afeasibilitystudyonprotonrangemonitoringusing13npeakininhomogeneoustargets AT haqueabulkalamfazlul afeasibilitystudyonprotonrangemonitoringusing13npeakininhomogeneoustargets AT itoshigeki afeasibilitystudyonprotonrangemonitoringusing13npeakininhomogeneoustargets AT gotohshinichi afeasibilitystudyonprotonrangemonitoringusing13npeakininhomogeneoustargets AT yamayataiga afeasibilitystudyonprotonrangemonitoringusing13npeakininhomogeneoustargets AT watabehiroshi afeasibilitystudyonprotonrangemonitoringusing13npeakininhomogeneoustargets AT islammdrafiqul feasibilitystudyonprotonrangemonitoringusing13npeakininhomogeneoustargets AT shahmohammadibenimehrdad feasibilitystudyonprotonrangemonitoringusing13npeakininhomogeneoustargets AT inamuraakihito feasibilitystudyonprotonrangemonitoringusing13npeakininhomogeneoustargets AT safakattınursel feasibilitystudyonprotonrangemonitoringusing13npeakininhomogeneoustargets AT miyakemasayasu feasibilitystudyonprotonrangemonitoringusing13npeakininhomogeneoustargets AT rahmanmahabubur feasibilitystudyonprotonrangemonitoringusing13npeakininhomogeneoustargets AT haqueabulkalamfazlul feasibilitystudyonprotonrangemonitoringusing13npeakininhomogeneoustargets AT itoshigeki feasibilitystudyonprotonrangemonitoringusing13npeakininhomogeneoustargets AT gotohshinichi feasibilitystudyonprotonrangemonitoringusing13npeakininhomogeneoustargets AT yamayataiga feasibilitystudyonprotonrangemonitoringusing13npeakininhomogeneoustargets AT watabehiroshi feasibilitystudyonprotonrangemonitoringusing13npeakininhomogeneoustargets |