Cargando…
Multinomial Convolutions for Joint Modeling of Regulatory Motifs and Sequence Activity Readouts
A common goal in the convolutional neural network (CNN) modeling of genomic data is to discover specific sequence motifs. Post hoc analysis methods aid in this task but are dependent on parameters whose optimal values are unclear and applying the discovered motifs to new genomic data is not straight...
Autores principales: | Park, Minjun, Singh, Salvi, Khan, Samin Rahman, Abrar, Mohammed Abid, Grisanti, Francisco, Rahman, M. Sohel, Samee, Md. Abul Hassan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9498894/ https://www.ncbi.nlm.nih.gov/pubmed/36140783 http://dx.doi.org/10.3390/genes13091614 |
Ejemplares similares
-
DeepBend: An interpretable model of DNA bendability
por: Khan, Samin Rahman, et al.
Publicado: (2023) -
NoVaTeST: identifying genes with location-dependent noise variance in spatial transcriptomics data
por: Abrar, Mohammed Abid, et al.
Publicado: (2023) -
ScribbleDom: using scribble-annotated histology images to identify domains in spatial transcriptomics data
por: Rahman, Mohammad Nuwaisir, et al.
Publicado: (2023) -
Systematic identification of non-canonical transcription factor motifs
por: Chumpitaz-Diaz, Luis, et al.
Publicado: (2021) -
Decoding the PITX2-controlled genetic network in atrial fibrillation
por: Steimle, Jeffrey D., et al.
Publicado: (2022)