Cargando…
Strange attractor of a narwhal (Monodon monoceros)
Detecting structures within the continuous diving behavior of marine animals is challenging, and no universal framework is available. We captured such diverse structures using chaos theory. By applying time-delay embedding to exceptionally long dive records (83 d) from the narwhal, we reconstructed...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9498936/ https://www.ncbi.nlm.nih.gov/pubmed/36136974 http://dx.doi.org/10.1371/journal.pcbi.1010432 |
Sumario: | Detecting structures within the continuous diving behavior of marine animals is challenging, and no universal framework is available. We captured such diverse structures using chaos theory. By applying time-delay embedding to exceptionally long dive records (83 d) from the narwhal, we reconstructed the state-space portrait. Using measures of chaos, we detected a diurnal pattern and its seasonal modulation, classified data, and found how sea-ice appearance shifts time budgets. There is more near-surface rest but deeper dives at solar noon, and more intense diving during twilight and at night but to shallower depths (likely following squid); sea-ice appearance reduces rest. The introduced geometrical approach is simple to implement and potentially helpful for mapping and labeling long-term behavioral data, identifying differences between individual animals and species, and detecting perturbations. |
---|