Cargando…
Endophytic Metarhizium robertsii suppresses the phytopathogen, Cochliobolus heterostrophus and modulates maize defenses
Fungi in the genus Metarhizium (Hypocreales: Clavicipitaceae) are insect-pathogens and endophytes that can benefit their host plant through growth promotion and protection against stresses. Cochliobolus heterostrophus (Drechsler) Drechsler (Pleosporales: Pleosporaceae) is an economically-significant...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9499252/ https://www.ncbi.nlm.nih.gov/pubmed/36137142 http://dx.doi.org/10.1371/journal.pone.0272944 |
_version_ | 1784794951039582208 |
---|---|
author | Ahmad, Imtiaz Jiménez-Gasco, María del Mar Luthe, Dawn S. Barbercheck, Mary E. |
author_facet | Ahmad, Imtiaz Jiménez-Gasco, María del Mar Luthe, Dawn S. Barbercheck, Mary E. |
author_sort | Ahmad, Imtiaz |
collection | PubMed |
description | Fungi in the genus Metarhizium (Hypocreales: Clavicipitaceae) are insect-pathogens and endophytes that can benefit their host plant through growth promotion and protection against stresses. Cochliobolus heterostrophus (Drechsler) Drechsler (Pleosporales: Pleosporaceae) is an economically-significant phytopathogenic fungus that causes Southern Corn Leaf Blight (SCLB) in maize. We conducted greenhouse and lab-based experiments to determine the effects of endophytic M. robertsii J.F. Bisch., Rehner & Humber on growth and defense in maize (Zea mays L.) infected with C. heterostrophus. We inoculated maize seeds with spores of M. robertsii and, at the 3 to 4-leaf stage, the youngest true leaf of M. robertsii-treated and untreated control plants with spores of C. heterostrophus. After 96 h, we measured maize height, above-ground biomass, endophytic colonization by M. robertsii, severity of SCLB, and expression of plant defense genes and phytohormone content. We recovered M. robertsii from 74% of plants grown from treated seed. The severity of SCLB in M. robertsii-treated maize plants was lower than in plants inoculated only with C. heterostrophus. M. robertsii-treated maize inoculated or not inoculated with C. heterostrophus showed greater height and above-ground biomass compared with untreated control plants. Height and above-ground biomass of maize co-inoculated with M. robertsii and C. heterostrophus were not different from M. robertsii-treated maize. M. robertsii modulated the expression of defense genes and the phytohormone content in maize inoculated with C. heterostrophus compared with plants not inoculated with C. heterostrophus and control plants. These results suggest that endophytic M. robertsii can promote maize growth and reduce development of SCLB, possibly by induced systemic resistance mediated by modulation of phytohormones and expression of defense and growth-related genes in maize. |
format | Online Article Text |
id | pubmed-9499252 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-94992522022-09-23 Endophytic Metarhizium robertsii suppresses the phytopathogen, Cochliobolus heterostrophus and modulates maize defenses Ahmad, Imtiaz Jiménez-Gasco, María del Mar Luthe, Dawn S. Barbercheck, Mary E. PLoS One Research Article Fungi in the genus Metarhizium (Hypocreales: Clavicipitaceae) are insect-pathogens and endophytes that can benefit their host plant through growth promotion and protection against stresses. Cochliobolus heterostrophus (Drechsler) Drechsler (Pleosporales: Pleosporaceae) is an economically-significant phytopathogenic fungus that causes Southern Corn Leaf Blight (SCLB) in maize. We conducted greenhouse and lab-based experiments to determine the effects of endophytic M. robertsii J.F. Bisch., Rehner & Humber on growth and defense in maize (Zea mays L.) infected with C. heterostrophus. We inoculated maize seeds with spores of M. robertsii and, at the 3 to 4-leaf stage, the youngest true leaf of M. robertsii-treated and untreated control plants with spores of C. heterostrophus. After 96 h, we measured maize height, above-ground biomass, endophytic colonization by M. robertsii, severity of SCLB, and expression of plant defense genes and phytohormone content. We recovered M. robertsii from 74% of plants grown from treated seed. The severity of SCLB in M. robertsii-treated maize plants was lower than in plants inoculated only with C. heterostrophus. M. robertsii-treated maize inoculated or not inoculated with C. heterostrophus showed greater height and above-ground biomass compared with untreated control plants. Height and above-ground biomass of maize co-inoculated with M. robertsii and C. heterostrophus were not different from M. robertsii-treated maize. M. robertsii modulated the expression of defense genes and the phytohormone content in maize inoculated with C. heterostrophus compared with plants not inoculated with C. heterostrophus and control plants. These results suggest that endophytic M. robertsii can promote maize growth and reduce development of SCLB, possibly by induced systemic resistance mediated by modulation of phytohormones and expression of defense and growth-related genes in maize. Public Library of Science 2022-09-22 /pmc/articles/PMC9499252/ /pubmed/36137142 http://dx.doi.org/10.1371/journal.pone.0272944 Text en © 2022 Ahmad et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Ahmad, Imtiaz Jiménez-Gasco, María del Mar Luthe, Dawn S. Barbercheck, Mary E. Endophytic Metarhizium robertsii suppresses the phytopathogen, Cochliobolus heterostrophus and modulates maize defenses |
title | Endophytic Metarhizium robertsii suppresses the phytopathogen, Cochliobolus heterostrophus and modulates maize defenses |
title_full | Endophytic Metarhizium robertsii suppresses the phytopathogen, Cochliobolus heterostrophus and modulates maize defenses |
title_fullStr | Endophytic Metarhizium robertsii suppresses the phytopathogen, Cochliobolus heterostrophus and modulates maize defenses |
title_full_unstemmed | Endophytic Metarhizium robertsii suppresses the phytopathogen, Cochliobolus heterostrophus and modulates maize defenses |
title_short | Endophytic Metarhizium robertsii suppresses the phytopathogen, Cochliobolus heterostrophus and modulates maize defenses |
title_sort | endophytic metarhizium robertsii suppresses the phytopathogen, cochliobolus heterostrophus and modulates maize defenses |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9499252/ https://www.ncbi.nlm.nih.gov/pubmed/36137142 http://dx.doi.org/10.1371/journal.pone.0272944 |
work_keys_str_mv | AT ahmadimtiaz endophyticmetarhiziumrobertsiisuppressesthephytopathogencochliobolusheterostrophusandmodulatesmaizedefenses AT jimenezgascomariadelmar endophyticmetarhiziumrobertsiisuppressesthephytopathogencochliobolusheterostrophusandmodulatesmaizedefenses AT luthedawns endophyticmetarhiziumrobertsiisuppressesthephytopathogencochliobolusheterostrophusandmodulatesmaizedefenses AT barbercheckmarye endophyticmetarhiziumrobertsiisuppressesthephytopathogencochliobolusheterostrophusandmodulatesmaizedefenses |