Cargando…

Evaluation and identification of advanced lentil interspecific derivatives resulted in the development of early maturing, high yielding, and disease-resistant cultivars under Indian agro-ecological conditions

The genetic base revealed by pedigree records of the majority of released cultivars appears to be narrow in major pulse crops, including lentils, because of the frequent use of the same parents and their derivatives in crop improvement programs. Therefore, corrective measures are needed to widen the...

Descripción completa

Detalles Bibliográficos
Autores principales: Singh, Mohar, Kumar, Sanjeev, Mehra, Reena, Sood, Salej, Malhotra, Nikhil, Sinha, Reena, Jamwal, Sonika, Gupta, Vikas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9499259/
https://www.ncbi.nlm.nih.gov/pubmed/36161028
http://dx.doi.org/10.3389/fpls.2022.936572
Descripción
Sumario:The genetic base revealed by pedigree records of the majority of released cultivars appears to be narrow in major pulse crops, including lentils, because of the frequent use of the same parents and their derivatives in crop improvement programs. Therefore, corrective measures are needed to widen the genetic base by involving the genetic resources of a distinct gene pool. In this direction, rigorous efforts were made to introgress wild Lens taxa, L. culinaris ssp. orientalis, and L. ervoides into the backgrounds of cultivated varieties. Subsequently, genetic materials were advanced through the single seed descent method of breeding along with a rapid generation advancement (normal and off-season) approach. Two F(10:11) interspecific derivatives of lentils were evaluated in augmented block design at two locations, viz. International Centre for Agricultural Research in Dry Areas (ICARDA) and Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST), India. The analysis of variance showed remarkable variability for all target characters at both locations. The heritability estimates were high, and correlation analysis exhibited a significant association between the majority of traits assessed at ICARDA and SKUAST, India. Further, SKUAST identified the most promising lines as “Jammu Lentil 144” and “Jammu Lentil 71.” These derivatives were further validated separately for their agronomic potential and resistance against major biotic stresses. The results revealed that Jammu Lentil 144 and Jammu Lentil 71 produced 16.65 and 9.40% more seed yield than local and national checks, including earliness, by 25 and 15 days, respectively. These promising interspecific derivatives were also found to be resistant to fusarium wilt, root rot, pod borer, and aphid infestations. The standard agronomy of these cultivars has also been assessed consecutively for 2 years at SKUAST. Overall, the pre-breeding efforts have resulted in the development of early maturing, high-yielding, and disease-resistant lentil cultivars for the Jammu region of India.