Cargando…
Association analyses of rare variants identify two genes associated with refractive error
PURPOSE: Genetic variants identified through population-based genome-wide studies are generally of high frequency, exerting their action in the central part of the refractive error spectrum. However, the power to identify associations with variants of lower minor allele frequency is greatly reduced,...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9499304/ https://www.ncbi.nlm.nih.gov/pubmed/36137074 http://dx.doi.org/10.1371/journal.pone.0272379 |
_version_ | 1784794964288339968 |
---|---|
author | Patasova, Karina Haarman, Annechien E. G. Musolf, Anthony M. Mahroo, Omar A. Rahi, Jugnoo S. Falchi, Mario Verhoeven, Virginie J. M. Bailey-Wilson, Joan E. Klaver, Caroline C. W. Duggal, Priya Klein, Alison Guggenheim, Jeremy A. Hammond, Chris J. Hysi, Pirro G. |
author_facet | Patasova, Karina Haarman, Annechien E. G. Musolf, Anthony M. Mahroo, Omar A. Rahi, Jugnoo S. Falchi, Mario Verhoeven, Virginie J. M. Bailey-Wilson, Joan E. Klaver, Caroline C. W. Duggal, Priya Klein, Alison Guggenheim, Jeremy A. Hammond, Chris J. Hysi, Pirro G. |
author_sort | Patasova, Karina |
collection | PubMed |
description | PURPOSE: Genetic variants identified through population-based genome-wide studies are generally of high frequency, exerting their action in the central part of the refractive error spectrum. However, the power to identify associations with variants of lower minor allele frequency is greatly reduced, requiring considerable sample sizes. Here we aim to assess the impact of rare variants on genetic variation of refractive errors in a very large general population cohort. METHODS: Genetic association analyses of non-cyclopaedic autorefraction calculated as mean spherical equivalent (SPHE) used whole-exome sequence genotypic information from 50,893 unrelated participants in the UK Biobank of European ancestry. Gene-based analyses tested for association with SPHE using an optimised SNP-set kernel association test (SKAT-O) restricted to rare variants (minor allele frequency < 1%) within protein-coding regions of the genome. All models were adjusted for age, sex and common lead variants within the same locus reported by previous genome-wide association studies. Potentially causal markers driving association at significant loci were elucidated using sensitivity analyses by sequentially dropping the most associated variants from gene-based analyses. RESULTS: We found strong statistical evidence for association of SPHE with the SIX6 (p-value = 2.15 x 10(−10), or Bonferroni-Corrected p = 4.41x10(-06)) and the CRX gene (p-value = 6.65 x 10(−08), or Bonferroni-Corrected p = 0.001). The SIX6 gene codes for a transcription factor believed to be critical to the eye, retina and optic disc development and morphology, while CRX regulates photoreceptor specification and expression of over 700 genes in the retina. These novel associations suggest an important role of genes involved in eye morphogenesis in refractive error. CONCLUSION: The results of our study support previous research highlighting the importance of rare variants to the genetic risk of refractive error. We explain some of the origins of the genetic signals seen in GWAS but also report for the first time a completely novel association with the CRX gene. |
format | Online Article Text |
id | pubmed-9499304 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-94993042022-09-23 Association analyses of rare variants identify two genes associated with refractive error Patasova, Karina Haarman, Annechien E. G. Musolf, Anthony M. Mahroo, Omar A. Rahi, Jugnoo S. Falchi, Mario Verhoeven, Virginie J. M. Bailey-Wilson, Joan E. Klaver, Caroline C. W. Duggal, Priya Klein, Alison Guggenheim, Jeremy A. Hammond, Chris J. Hysi, Pirro G. PLoS One Research Article PURPOSE: Genetic variants identified through population-based genome-wide studies are generally of high frequency, exerting their action in the central part of the refractive error spectrum. However, the power to identify associations with variants of lower minor allele frequency is greatly reduced, requiring considerable sample sizes. Here we aim to assess the impact of rare variants on genetic variation of refractive errors in a very large general population cohort. METHODS: Genetic association analyses of non-cyclopaedic autorefraction calculated as mean spherical equivalent (SPHE) used whole-exome sequence genotypic information from 50,893 unrelated participants in the UK Biobank of European ancestry. Gene-based analyses tested for association with SPHE using an optimised SNP-set kernel association test (SKAT-O) restricted to rare variants (minor allele frequency < 1%) within protein-coding regions of the genome. All models were adjusted for age, sex and common lead variants within the same locus reported by previous genome-wide association studies. Potentially causal markers driving association at significant loci were elucidated using sensitivity analyses by sequentially dropping the most associated variants from gene-based analyses. RESULTS: We found strong statistical evidence for association of SPHE with the SIX6 (p-value = 2.15 x 10(−10), or Bonferroni-Corrected p = 4.41x10(-06)) and the CRX gene (p-value = 6.65 x 10(−08), or Bonferroni-Corrected p = 0.001). The SIX6 gene codes for a transcription factor believed to be critical to the eye, retina and optic disc development and morphology, while CRX regulates photoreceptor specification and expression of over 700 genes in the retina. These novel associations suggest an important role of genes involved in eye morphogenesis in refractive error. CONCLUSION: The results of our study support previous research highlighting the importance of rare variants to the genetic risk of refractive error. We explain some of the origins of the genetic signals seen in GWAS but also report for the first time a completely novel association with the CRX gene. Public Library of Science 2022-09-22 /pmc/articles/PMC9499304/ /pubmed/36137074 http://dx.doi.org/10.1371/journal.pone.0272379 Text en https://creativecommons.org/publicdomain/zero/1.0/This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication. |
spellingShingle | Research Article Patasova, Karina Haarman, Annechien E. G. Musolf, Anthony M. Mahroo, Omar A. Rahi, Jugnoo S. Falchi, Mario Verhoeven, Virginie J. M. Bailey-Wilson, Joan E. Klaver, Caroline C. W. Duggal, Priya Klein, Alison Guggenheim, Jeremy A. Hammond, Chris J. Hysi, Pirro G. Association analyses of rare variants identify two genes associated with refractive error |
title | Association analyses of rare variants identify two genes associated with refractive error |
title_full | Association analyses of rare variants identify two genes associated with refractive error |
title_fullStr | Association analyses of rare variants identify two genes associated with refractive error |
title_full_unstemmed | Association analyses of rare variants identify two genes associated with refractive error |
title_short | Association analyses of rare variants identify two genes associated with refractive error |
title_sort | association analyses of rare variants identify two genes associated with refractive error |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9499304/ https://www.ncbi.nlm.nih.gov/pubmed/36137074 http://dx.doi.org/10.1371/journal.pone.0272379 |
work_keys_str_mv | AT patasovakarina associationanalysesofrarevariantsidentifytwogenesassociatedwithrefractiveerror AT haarmanannechieneg associationanalysesofrarevariantsidentifytwogenesassociatedwithrefractiveerror AT musolfanthonym associationanalysesofrarevariantsidentifytwogenesassociatedwithrefractiveerror AT mahrooomara associationanalysesofrarevariantsidentifytwogenesassociatedwithrefractiveerror AT rahijugnoos associationanalysesofrarevariantsidentifytwogenesassociatedwithrefractiveerror AT falchimario associationanalysesofrarevariantsidentifytwogenesassociatedwithrefractiveerror AT verhoevenvirginiejm associationanalysesofrarevariantsidentifytwogenesassociatedwithrefractiveerror AT baileywilsonjoane associationanalysesofrarevariantsidentifytwogenesassociatedwithrefractiveerror AT klavercarolinecw associationanalysesofrarevariantsidentifytwogenesassociatedwithrefractiveerror AT duggalpriya associationanalysesofrarevariantsidentifytwogenesassociatedwithrefractiveerror AT kleinalison associationanalysesofrarevariantsidentifytwogenesassociatedwithrefractiveerror AT guggenheimjeremya associationanalysesofrarevariantsidentifytwogenesassociatedwithrefractiveerror AT hammondchrisj associationanalysesofrarevariantsidentifytwogenesassociatedwithrefractiveerror AT hysipirrog associationanalysesofrarevariantsidentifytwogenesassociatedwithrefractiveerror AT associationanalysesofrarevariantsidentifytwogenesassociatedwithrefractiveerror |