Cargando…

High-Precision Automatic Identification of Fentanyl-Related Drugs by Terahertz Spectroscopy with Molecular Dynamics Simulation and Spectral Similarity Mapping

Fentanyl is a potent opioid analgesic with high bioavailability. It is the leading cause of drug addiction and overdose death. To better control the abuse of fentanyl and its derivatives, it is crucial to develop rapid and sensitive detection methods. However, fentanyl-related substrates undergo sim...

Descripción completa

Detalles Bibliográficos
Autores principales: Qu, Fangfang, Lin, Lei, Nie, Pengcheng, Xia, Zhengyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9499453/
https://www.ncbi.nlm.nih.gov/pubmed/36142226
http://dx.doi.org/10.3390/ijms231810321
_version_ 1784794994655100928
author Qu, Fangfang
Lin, Lei
Nie, Pengcheng
Xia, Zhengyan
author_facet Qu, Fangfang
Lin, Lei
Nie, Pengcheng
Xia, Zhengyan
author_sort Qu, Fangfang
collection PubMed
description Fentanyl is a potent opioid analgesic with high bioavailability. It is the leading cause of drug addiction and overdose death. To better control the abuse of fentanyl and its derivatives, it is crucial to develop rapid and sensitive detection methods. However, fentanyl-related substrates undergo similar molecular structures resulting in similar properties, which are difficult to be identified by conventional spectroscopic methods. In this work, a method for the automatic identification of 8 fentanyl-related substances with similar spectral characteristics was developed using terahertz (THz) spectroscopy coupled with density functional theory (DFT) and spectral similarity mapping (SSM). To characterize the THz fingerprints of these fentanyl-related samples more accurately, the method of baseline estimation and denoising with sparsity was performed before revealing the unique molecular dynamics of each substance by DFT. The SSM method was proposed to identify these fentanyl analogs based on weighted spectral cosine–cross similarity and fingerprint discrete Fréchet distance, generating a matching list by stepwise searching the entire spectral database. The top matched list returned the identification results of the target fentanyl analogs with accuracies of 94.48~99.33%. Results from this work provide algorithms’ increased reliability, which serves as an artificial intelligence-based tool for high-precision fentanyl analysis in real-world samples.
format Online
Article
Text
id pubmed-9499453
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-94994532022-09-23 High-Precision Automatic Identification of Fentanyl-Related Drugs by Terahertz Spectroscopy with Molecular Dynamics Simulation and Spectral Similarity Mapping Qu, Fangfang Lin, Lei Nie, Pengcheng Xia, Zhengyan Int J Mol Sci Article Fentanyl is a potent opioid analgesic with high bioavailability. It is the leading cause of drug addiction and overdose death. To better control the abuse of fentanyl and its derivatives, it is crucial to develop rapid and sensitive detection methods. However, fentanyl-related substrates undergo similar molecular structures resulting in similar properties, which are difficult to be identified by conventional spectroscopic methods. In this work, a method for the automatic identification of 8 fentanyl-related substances with similar spectral characteristics was developed using terahertz (THz) spectroscopy coupled with density functional theory (DFT) and spectral similarity mapping (SSM). To characterize the THz fingerprints of these fentanyl-related samples more accurately, the method of baseline estimation and denoising with sparsity was performed before revealing the unique molecular dynamics of each substance by DFT. The SSM method was proposed to identify these fentanyl analogs based on weighted spectral cosine–cross similarity and fingerprint discrete Fréchet distance, generating a matching list by stepwise searching the entire spectral database. The top matched list returned the identification results of the target fentanyl analogs with accuracies of 94.48~99.33%. Results from this work provide algorithms’ increased reliability, which serves as an artificial intelligence-based tool for high-precision fentanyl analysis in real-world samples. MDPI 2022-09-07 /pmc/articles/PMC9499453/ /pubmed/36142226 http://dx.doi.org/10.3390/ijms231810321 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Qu, Fangfang
Lin, Lei
Nie, Pengcheng
Xia, Zhengyan
High-Precision Automatic Identification of Fentanyl-Related Drugs by Terahertz Spectroscopy with Molecular Dynamics Simulation and Spectral Similarity Mapping
title High-Precision Automatic Identification of Fentanyl-Related Drugs by Terahertz Spectroscopy with Molecular Dynamics Simulation and Spectral Similarity Mapping
title_full High-Precision Automatic Identification of Fentanyl-Related Drugs by Terahertz Spectroscopy with Molecular Dynamics Simulation and Spectral Similarity Mapping
title_fullStr High-Precision Automatic Identification of Fentanyl-Related Drugs by Terahertz Spectroscopy with Molecular Dynamics Simulation and Spectral Similarity Mapping
title_full_unstemmed High-Precision Automatic Identification of Fentanyl-Related Drugs by Terahertz Spectroscopy with Molecular Dynamics Simulation and Spectral Similarity Mapping
title_short High-Precision Automatic Identification of Fentanyl-Related Drugs by Terahertz Spectroscopy with Molecular Dynamics Simulation and Spectral Similarity Mapping
title_sort high-precision automatic identification of fentanyl-related drugs by terahertz spectroscopy with molecular dynamics simulation and spectral similarity mapping
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9499453/
https://www.ncbi.nlm.nih.gov/pubmed/36142226
http://dx.doi.org/10.3390/ijms231810321
work_keys_str_mv AT qufangfang highprecisionautomaticidentificationoffentanylrelateddrugsbyterahertzspectroscopywithmoleculardynamicssimulationandspectralsimilaritymapping
AT linlei highprecisionautomaticidentificationoffentanylrelateddrugsbyterahertzspectroscopywithmoleculardynamicssimulationandspectralsimilaritymapping
AT niepengcheng highprecisionautomaticidentificationoffentanylrelateddrugsbyterahertzspectroscopywithmoleculardynamicssimulationandspectralsimilaritymapping
AT xiazhengyan highprecisionautomaticidentificationoffentanylrelateddrugsbyterahertzspectroscopywithmoleculardynamicssimulationandspectralsimilaritymapping