Cargando…
omicsGAT: Graph Attention Network for Cancer Subtype Analyses
The use of high-throughput omics technologies is becoming increasingly popular in all facets of biomedical science. The mRNA sequencing (RNA-seq) method reports quantitative measures of more than tens of thousands of biological features. It provides a more comprehensive molecular perspective of stud...
Autores principales: | Baul, Sudipto, Ahmed, Khandakar Tanvir, Filipek, Joseph, Zhang, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9499656/ https://www.ncbi.nlm.nih.gov/pubmed/36142140 http://dx.doi.org/10.3390/ijms231810220 |
Ejemplares similares
-
TemporalGAT: Attention-Based Dynamic Graph Representation Learning
por: Fathy, Ahmed, et al.
Publicado: (2020) -
LaGAT: link-aware graph attention network for drug–drug interaction prediction
por: Hong, Yue, et al.
Publicado: (2022) -
sAMPpred-GAT: prediction of antimicrobial peptide by graph attention network and predicted peptide structure
por: Yan, Ke, et al.
Publicado: (2022) -
GAT-LI: a graph attention network based learning and interpreting method for functional brain network classification
por: Hu, Jinlong, et al.
Publicado: (2021) -
FraGAT: a fragment-oriented multi-scale graph attention model for molecular property prediction
por: Zhang, Ziqiao, et al.
Publicado: (2021)