Cargando…
Role of Platelet-Rich Plasma Gel in Promoting Wound Healing Based on Medical Images of Wounds
A wound is the pathological change of soft tissue under normal skin caused by various factors, such as collision, contusion, hot crush, avulsion, corrosive chemicals, operations, excessive wound tension after operations, local pressure that cannot be relieved for a long time, liquid immersion, local...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9499777/ https://www.ncbi.nlm.nih.gov/pubmed/36176925 http://dx.doi.org/10.1155/2022/1543604 |
Sumario: | A wound is the pathological change of soft tissue under normal skin caused by various factors, such as collision, contusion, hot crush, avulsion, corrosive chemicals, operations, excessive wound tension after operations, local pressure that cannot be relieved for a long time, liquid immersion, local infection, and rejection reactions caused by allogeneic substances. The skin itself or its underlying soft tissue loses its integrity and continuity, thus losing its normal physiological function. Medical image analysis is a medical term that refers to the interdisciplinary fields of integrated medical imaging, artificial intelligence, digital image processing and analysis, mathematical modeling, and numerical algorithms. According to the time of wound formation, they can be divided into acute and chronic wounds. The common acute wounds include lacerations caused by trauma, surgical incisions, burns, and donor sites formed after skin graft operations. This article mainly studies the role of platelet-rich plasma gel nanocomposites in promoting wound healing. It is proven that ptt-rich plasma gel can significantly promote tissue repair and regeneration and accelerate wound healing in patients with severe burns. The atomic number of the nanocomposite has a better treatment effect on the nanoparticle approach. In this paper, chitosan nanocomposite membrane, nanocomposite algorithm, and the calculation method of enthalpy of formation of high alloy nanomaterials were used to study the role of ptt-rich plasma gel combined chitosan nanocomposite membrane loaded bone marrow stromal cells in promoting wound healing, and its effects were applied to the repair of special site burns, special burns, and different age burns. Good wound repair benefits from the correct treatment of the wound, which directly affects the stability and development of the internal environment. The difference in healing time between the two groups was statistically significant, and the recovery time of the PRP group was 0.001 less than that of the control group. The results showed that the wound healing time of the PRP group was significantly shorter than that of the control group (P < 0.05); after treatment, the content of VEGF in the wound tissue of the two groups increased, especially in the PRP group; the effective rate of the PRP group was 75.0%, which was higher than 68.8% of the control group. It can play an important role in the regulation of expression and the pathophysiological process of wound healing. |
---|