Cargando…

Variability of strain engraftment and predictability of microbiome composition after fecal microbiota transplantation across different diseases

Fecal microbiota transplantation (FMT) is highly effective against recurrent Clostridioides difficile infection and is considered a promising treatment for other microbiome-related disorders, but a comprehensive understanding of microbial engraftment dynamics is lacking, which prevents informed appl...

Descripción completa

Detalles Bibliográficos
Autores principales: Ianiro, Gianluca, Punčochář, Michal, Karcher, Nicolai, Porcari, Serena, Armanini, Federica, Asnicar, Francesco, Beghini, Francesco, Blanco-Míguez, Aitor, Cumbo, Fabio, Manghi, Paolo, Pinto, Federica, Masucci, Luca, Quaranta, Gianluca, De Giorgi, Silvia, Sciumè, Giusi Desirè, Bibbò, Stefano, Del Chierico, Federica, Putignani, Lorenza, Sanguinetti, Maurizio, Gasbarrini, Antonio, Valles-Colomer, Mireia, Cammarota, Giovanni, Segata, Nicola
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9499858/
https://www.ncbi.nlm.nih.gov/pubmed/36109637
http://dx.doi.org/10.1038/s41591-022-01964-3
_version_ 1784795090984632320
author Ianiro, Gianluca
Punčochář, Michal
Karcher, Nicolai
Porcari, Serena
Armanini, Federica
Asnicar, Francesco
Beghini, Francesco
Blanco-Míguez, Aitor
Cumbo, Fabio
Manghi, Paolo
Pinto, Federica
Masucci, Luca
Quaranta, Gianluca
De Giorgi, Silvia
Sciumè, Giusi Desirè
Bibbò, Stefano
Del Chierico, Federica
Putignani, Lorenza
Sanguinetti, Maurizio
Gasbarrini, Antonio
Valles-Colomer, Mireia
Cammarota, Giovanni
Segata, Nicola
author_facet Ianiro, Gianluca
Punčochář, Michal
Karcher, Nicolai
Porcari, Serena
Armanini, Federica
Asnicar, Francesco
Beghini, Francesco
Blanco-Míguez, Aitor
Cumbo, Fabio
Manghi, Paolo
Pinto, Federica
Masucci, Luca
Quaranta, Gianluca
De Giorgi, Silvia
Sciumè, Giusi Desirè
Bibbò, Stefano
Del Chierico, Federica
Putignani, Lorenza
Sanguinetti, Maurizio
Gasbarrini, Antonio
Valles-Colomer, Mireia
Cammarota, Giovanni
Segata, Nicola
author_sort Ianiro, Gianluca
collection PubMed
description Fecal microbiota transplantation (FMT) is highly effective against recurrent Clostridioides difficile infection and is considered a promising treatment for other microbiome-related disorders, but a comprehensive understanding of microbial engraftment dynamics is lacking, which prevents informed applications of this therapeutic approach. Here, we performed an integrated shotgun metagenomic systematic meta-analysis of new and publicly available stool microbiomes collected from 226 triads of donors, pre-FMT recipients and post-FMT recipients across eight different disease types. By leveraging improved metagenomic strain-profiling to infer strain sharing, we found that recipients with higher donor strain engraftment were more likely to experience clinical success after FMT (P = 0.017) when evaluated across studies. Considering all cohorts, increased engraftment was noted in individuals receiving FMT from multiple routes (for example, both via capsules and colonoscopy during the same treatment) as well as in antibiotic-treated recipients with infectious diseases compared with antibiotic-naïve patients with noncommunicable diseases. Bacteroidetes and Actinobacteria species (including Bifidobacteria) displayed higher engraftment than Firmicutes except for six under-characterized Firmicutes species. Cross-dataset machine learning predicted the presence or absence of species in the post-FMT recipient at 0.77 average AUROC in leave-one-dataset-out evaluation, and highlighted the relevance of microbial abundance, prevalence and taxonomy to infer post-FMT species presence. By exploring the dynamics of microbiome engraftment after FMT and their association with clinical variables, our study uncovered species-specific engraftment patterns and presented machine learning models able to predict donors that might optimize post-FMT specific microbiome characteristics for disease-targeted FMT protocols.
format Online
Article
Text
id pubmed-9499858
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group US
record_format MEDLINE/PubMed
spelling pubmed-94998582022-09-24 Variability of strain engraftment and predictability of microbiome composition after fecal microbiota transplantation across different diseases Ianiro, Gianluca Punčochář, Michal Karcher, Nicolai Porcari, Serena Armanini, Federica Asnicar, Francesco Beghini, Francesco Blanco-Míguez, Aitor Cumbo, Fabio Manghi, Paolo Pinto, Federica Masucci, Luca Quaranta, Gianluca De Giorgi, Silvia Sciumè, Giusi Desirè Bibbò, Stefano Del Chierico, Federica Putignani, Lorenza Sanguinetti, Maurizio Gasbarrini, Antonio Valles-Colomer, Mireia Cammarota, Giovanni Segata, Nicola Nat Med Article Fecal microbiota transplantation (FMT) is highly effective against recurrent Clostridioides difficile infection and is considered a promising treatment for other microbiome-related disorders, but a comprehensive understanding of microbial engraftment dynamics is lacking, which prevents informed applications of this therapeutic approach. Here, we performed an integrated shotgun metagenomic systematic meta-analysis of new and publicly available stool microbiomes collected from 226 triads of donors, pre-FMT recipients and post-FMT recipients across eight different disease types. By leveraging improved metagenomic strain-profiling to infer strain sharing, we found that recipients with higher donor strain engraftment were more likely to experience clinical success after FMT (P = 0.017) when evaluated across studies. Considering all cohorts, increased engraftment was noted in individuals receiving FMT from multiple routes (for example, both via capsules and colonoscopy during the same treatment) as well as in antibiotic-treated recipients with infectious diseases compared with antibiotic-naïve patients with noncommunicable diseases. Bacteroidetes and Actinobacteria species (including Bifidobacteria) displayed higher engraftment than Firmicutes except for six under-characterized Firmicutes species. Cross-dataset machine learning predicted the presence or absence of species in the post-FMT recipient at 0.77 average AUROC in leave-one-dataset-out evaluation, and highlighted the relevance of microbial abundance, prevalence and taxonomy to infer post-FMT species presence. By exploring the dynamics of microbiome engraftment after FMT and their association with clinical variables, our study uncovered species-specific engraftment patterns and presented machine learning models able to predict donors that might optimize post-FMT specific microbiome characteristics for disease-targeted FMT protocols. Nature Publishing Group US 2022-09-15 2022 /pmc/articles/PMC9499858/ /pubmed/36109637 http://dx.doi.org/10.1038/s41591-022-01964-3 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Ianiro, Gianluca
Punčochář, Michal
Karcher, Nicolai
Porcari, Serena
Armanini, Federica
Asnicar, Francesco
Beghini, Francesco
Blanco-Míguez, Aitor
Cumbo, Fabio
Manghi, Paolo
Pinto, Federica
Masucci, Luca
Quaranta, Gianluca
De Giorgi, Silvia
Sciumè, Giusi Desirè
Bibbò, Stefano
Del Chierico, Federica
Putignani, Lorenza
Sanguinetti, Maurizio
Gasbarrini, Antonio
Valles-Colomer, Mireia
Cammarota, Giovanni
Segata, Nicola
Variability of strain engraftment and predictability of microbiome composition after fecal microbiota transplantation across different diseases
title Variability of strain engraftment and predictability of microbiome composition after fecal microbiota transplantation across different diseases
title_full Variability of strain engraftment and predictability of microbiome composition after fecal microbiota transplantation across different diseases
title_fullStr Variability of strain engraftment and predictability of microbiome composition after fecal microbiota transplantation across different diseases
title_full_unstemmed Variability of strain engraftment and predictability of microbiome composition after fecal microbiota transplantation across different diseases
title_short Variability of strain engraftment and predictability of microbiome composition after fecal microbiota transplantation across different diseases
title_sort variability of strain engraftment and predictability of microbiome composition after fecal microbiota transplantation across different diseases
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9499858/
https://www.ncbi.nlm.nih.gov/pubmed/36109637
http://dx.doi.org/10.1038/s41591-022-01964-3
work_keys_str_mv AT ianirogianluca variabilityofstrainengraftmentandpredictabilityofmicrobiomecompositionafterfecalmicrobiotatransplantationacrossdifferentdiseases
AT puncocharmichal variabilityofstrainengraftmentandpredictabilityofmicrobiomecompositionafterfecalmicrobiotatransplantationacrossdifferentdiseases
AT karchernicolai variabilityofstrainengraftmentandpredictabilityofmicrobiomecompositionafterfecalmicrobiotatransplantationacrossdifferentdiseases
AT porcariserena variabilityofstrainengraftmentandpredictabilityofmicrobiomecompositionafterfecalmicrobiotatransplantationacrossdifferentdiseases
AT armaninifederica variabilityofstrainengraftmentandpredictabilityofmicrobiomecompositionafterfecalmicrobiotatransplantationacrossdifferentdiseases
AT asnicarfrancesco variabilityofstrainengraftmentandpredictabilityofmicrobiomecompositionafterfecalmicrobiotatransplantationacrossdifferentdiseases
AT beghinifrancesco variabilityofstrainengraftmentandpredictabilityofmicrobiomecompositionafterfecalmicrobiotatransplantationacrossdifferentdiseases
AT blancomiguezaitor variabilityofstrainengraftmentandpredictabilityofmicrobiomecompositionafterfecalmicrobiotatransplantationacrossdifferentdiseases
AT cumbofabio variabilityofstrainengraftmentandpredictabilityofmicrobiomecompositionafterfecalmicrobiotatransplantationacrossdifferentdiseases
AT manghipaolo variabilityofstrainengraftmentandpredictabilityofmicrobiomecompositionafterfecalmicrobiotatransplantationacrossdifferentdiseases
AT pintofederica variabilityofstrainengraftmentandpredictabilityofmicrobiomecompositionafterfecalmicrobiotatransplantationacrossdifferentdiseases
AT masucciluca variabilityofstrainengraftmentandpredictabilityofmicrobiomecompositionafterfecalmicrobiotatransplantationacrossdifferentdiseases
AT quarantagianluca variabilityofstrainengraftmentandpredictabilityofmicrobiomecompositionafterfecalmicrobiotatransplantationacrossdifferentdiseases
AT degiorgisilvia variabilityofstrainengraftmentandpredictabilityofmicrobiomecompositionafterfecalmicrobiotatransplantationacrossdifferentdiseases
AT sciumegiusidesire variabilityofstrainengraftmentandpredictabilityofmicrobiomecompositionafterfecalmicrobiotatransplantationacrossdifferentdiseases
AT bibbostefano variabilityofstrainengraftmentandpredictabilityofmicrobiomecompositionafterfecalmicrobiotatransplantationacrossdifferentdiseases
AT delchiericofederica variabilityofstrainengraftmentandpredictabilityofmicrobiomecompositionafterfecalmicrobiotatransplantationacrossdifferentdiseases
AT putignanilorenza variabilityofstrainengraftmentandpredictabilityofmicrobiomecompositionafterfecalmicrobiotatransplantationacrossdifferentdiseases
AT sanguinettimaurizio variabilityofstrainengraftmentandpredictabilityofmicrobiomecompositionafterfecalmicrobiotatransplantationacrossdifferentdiseases
AT gasbarriniantonio variabilityofstrainengraftmentandpredictabilityofmicrobiomecompositionafterfecalmicrobiotatransplantationacrossdifferentdiseases
AT vallescolomermireia variabilityofstrainengraftmentandpredictabilityofmicrobiomecompositionafterfecalmicrobiotatransplantationacrossdifferentdiseases
AT cammarotagiovanni variabilityofstrainengraftmentandpredictabilityofmicrobiomecompositionafterfecalmicrobiotatransplantationacrossdifferentdiseases
AT segatanicola variabilityofstrainengraftmentandpredictabilityofmicrobiomecompositionafterfecalmicrobiotatransplantationacrossdifferentdiseases