Cargando…

Analyzing cell-type-specific dynamics of metabolism in kidney repair

A common drawback of metabolic analyses of complex biological samples is the inability to consider cell-to-cell heterogeneity in the context of an organ or tissue. To overcome this limitation, we present an advanced high-spatial-resolution metabolomics approach using matrix-assisted laser desorption...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Gangqi, Heijs, Bram, Kostidis, Sarantos, Mahfouz, Ahmed, Rietjens, Rosalie G. J., Bijkerk, Roel, Koudijs, Angela, van der Pluijm, Loïs A. K., van den Berg, Cathelijne W., Dumas, Sébastien J., Carmeliet, Peter, Giera, Martin, van den Berg, Bernard M., Rabelink, Ton J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9499864/
https://www.ncbi.nlm.nih.gov/pubmed/36008550
http://dx.doi.org/10.1038/s42255-022-00615-8
_version_ 1784795092200980480
author Wang, Gangqi
Heijs, Bram
Kostidis, Sarantos
Mahfouz, Ahmed
Rietjens, Rosalie G. J.
Bijkerk, Roel
Koudijs, Angela
van der Pluijm, Loïs A. K.
van den Berg, Cathelijne W.
Dumas, Sébastien J.
Carmeliet, Peter
Giera, Martin
van den Berg, Bernard M.
Rabelink, Ton J.
author_facet Wang, Gangqi
Heijs, Bram
Kostidis, Sarantos
Mahfouz, Ahmed
Rietjens, Rosalie G. J.
Bijkerk, Roel
Koudijs, Angela
van der Pluijm, Loïs A. K.
van den Berg, Cathelijne W.
Dumas, Sébastien J.
Carmeliet, Peter
Giera, Martin
van den Berg, Bernard M.
Rabelink, Ton J.
author_sort Wang, Gangqi
collection PubMed
description A common drawback of metabolic analyses of complex biological samples is the inability to consider cell-to-cell heterogeneity in the context of an organ or tissue. To overcome this limitation, we present an advanced high-spatial-resolution metabolomics approach using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) combined with isotope tracing. This method allows mapping of cell-type-specific dynamic changes in central carbon metabolism in the context of a complex heterogeneous tissue architecture, such as the kidney. Combined with multiplexed immunofluorescence staining, this method can detect metabolic changes and nutrient partitioning in targeted cell types, as demonstrated in a bilateral renal ischemia–reperfusion injury (bIRI) experimental model. Our approach enables us to identify region-specific metabolic perturbations associated with the lesion and throughout recovery, including unexpected metabolic anomalies in cells with an apparently normal phenotype in the recovery phase. These findings may be relevant to an understanding of the homeostatic capacity of the kidney microenvironment. In sum, this method allows us to achieve resolution at the single-cell level in situ and hence to interpret cell-type-specific metabolic dynamics in the context of structure and metabolism of neighboring cells.
format Online
Article
Text
id pubmed-9499864
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-94998642022-09-24 Analyzing cell-type-specific dynamics of metabolism in kidney repair Wang, Gangqi Heijs, Bram Kostidis, Sarantos Mahfouz, Ahmed Rietjens, Rosalie G. J. Bijkerk, Roel Koudijs, Angela van der Pluijm, Loïs A. K. van den Berg, Cathelijne W. Dumas, Sébastien J. Carmeliet, Peter Giera, Martin van den Berg, Bernard M. Rabelink, Ton J. Nat Metab Letter A common drawback of metabolic analyses of complex biological samples is the inability to consider cell-to-cell heterogeneity in the context of an organ or tissue. To overcome this limitation, we present an advanced high-spatial-resolution metabolomics approach using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) combined with isotope tracing. This method allows mapping of cell-type-specific dynamic changes in central carbon metabolism in the context of a complex heterogeneous tissue architecture, such as the kidney. Combined with multiplexed immunofluorescence staining, this method can detect metabolic changes and nutrient partitioning in targeted cell types, as demonstrated in a bilateral renal ischemia–reperfusion injury (bIRI) experimental model. Our approach enables us to identify region-specific metabolic perturbations associated with the lesion and throughout recovery, including unexpected metabolic anomalies in cells with an apparently normal phenotype in the recovery phase. These findings may be relevant to an understanding of the homeostatic capacity of the kidney microenvironment. In sum, this method allows us to achieve resolution at the single-cell level in situ and hence to interpret cell-type-specific metabolic dynamics in the context of structure and metabolism of neighboring cells. Nature Publishing Group UK 2022-08-25 2022 /pmc/articles/PMC9499864/ /pubmed/36008550 http://dx.doi.org/10.1038/s42255-022-00615-8 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Letter
Wang, Gangqi
Heijs, Bram
Kostidis, Sarantos
Mahfouz, Ahmed
Rietjens, Rosalie G. J.
Bijkerk, Roel
Koudijs, Angela
van der Pluijm, Loïs A. K.
van den Berg, Cathelijne W.
Dumas, Sébastien J.
Carmeliet, Peter
Giera, Martin
van den Berg, Bernard M.
Rabelink, Ton J.
Analyzing cell-type-specific dynamics of metabolism in kidney repair
title Analyzing cell-type-specific dynamics of metabolism in kidney repair
title_full Analyzing cell-type-specific dynamics of metabolism in kidney repair
title_fullStr Analyzing cell-type-specific dynamics of metabolism in kidney repair
title_full_unstemmed Analyzing cell-type-specific dynamics of metabolism in kidney repair
title_short Analyzing cell-type-specific dynamics of metabolism in kidney repair
title_sort analyzing cell-type-specific dynamics of metabolism in kidney repair
topic Letter
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9499864/
https://www.ncbi.nlm.nih.gov/pubmed/36008550
http://dx.doi.org/10.1038/s42255-022-00615-8
work_keys_str_mv AT wanggangqi analyzingcelltypespecificdynamicsofmetabolisminkidneyrepair
AT heijsbram analyzingcelltypespecificdynamicsofmetabolisminkidneyrepair
AT kostidissarantos analyzingcelltypespecificdynamicsofmetabolisminkidneyrepair
AT mahfouzahmed analyzingcelltypespecificdynamicsofmetabolisminkidneyrepair
AT rietjensrosaliegj analyzingcelltypespecificdynamicsofmetabolisminkidneyrepair
AT bijkerkroel analyzingcelltypespecificdynamicsofmetabolisminkidneyrepair
AT koudijsangela analyzingcelltypespecificdynamicsofmetabolisminkidneyrepair
AT vanderpluijmloisak analyzingcelltypespecificdynamicsofmetabolisminkidneyrepair
AT vandenbergcathelijnew analyzingcelltypespecificdynamicsofmetabolisminkidneyrepair
AT dumassebastienj analyzingcelltypespecificdynamicsofmetabolisminkidneyrepair
AT carmelietpeter analyzingcelltypespecificdynamicsofmetabolisminkidneyrepair
AT gieramartin analyzingcelltypespecificdynamicsofmetabolisminkidneyrepair
AT vandenbergbernardm analyzingcelltypespecificdynamicsofmetabolisminkidneyrepair
AT rabelinktonj analyzingcelltypespecificdynamicsofmetabolisminkidneyrepair