Cargando…

Ti Ions Induce IL-1β Release by Activation of the NLRP3 Inflammasome in a Human Macrophage Cell Line

The aim of the present study was to investigate whether titanium (Ti)-induced release of interleukin (IL)-1β acts through the assembly of the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome. In addition, we examined whether particulate Ti or TiO(2) activates the same intracellul...

Descripción completa

Detalles Bibliográficos
Autores principales: Pettersson, Mattias, Almlin, Sanna, Romanos, Georgios E., Johansson, Anders
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9499900/
https://www.ncbi.nlm.nih.gov/pubmed/35726039
http://dx.doi.org/10.1007/s10753-022-01672-7
Descripción
Sumario:The aim of the present study was to investigate whether titanium (Ti)-induced release of interleukin (IL)-1β acts through the assembly of the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome. In addition, we examined whether particulate Ti or TiO(2) activates the same intracellular pathways with the assembly of the NLRP3 inflammasome as Ti ions. Ti ions are known to induce IL-1β maturation and release by the formation of metal–protein aggregates. Wild-type THP-1 (wt.) cells and NLRP3(−) and ASC(−) (apoptosis-associated speck-like protein containing caspase recruitment domain (CARD)) knockdown cells were used in the experimental analyses. Macro- and nanoparticles (NPs) of both Ti and TiO(2) were used as test agents. IL-1β release as a biomarker for inflammasome activation and cell viability was also analyzed. Periodate-oxidized adenosine triphosphate (oATP) was used to attenuate downstream signaling in NLRP3 inflammasome activation. Cellular uptake of Ti was examined using transmission electron microscopy. Cells exposed to the Ti-ion solution showed a dose-dependent increase in the release of IL-1β; conversely, exposure to particulate Ti did not result in increased IL-1β release. Cell viability was not affected by particulate Ti. Knockdown cells exposed to Ti showed a statistically significant reduction in the release of IL-1β compared with wt. cells (p < 0.001). Cellular uptake was detected in all Ti mixtures, and aggregates with various structures were observed. Ti ion–induced release of bioactive IL-1β in THP-1 cells involves the assembly of the NLRP3 inflammasome.