Cargando…

Serine-Arginine Protein Kinase 1 (SRPK1): a systematic review of its multimodal role in oncogenesis

Alternative splicing is implicated in each of the hallmarks of cancer, and is mechanised by various splicing factors. Serine-Arginine Protein Kinase 1 (SRPK1) is an enzyme which moderates the activity of splicing factors rich in serine/arginine domains. Here we review SRPK1’s relationship with vario...

Descripción completa

Detalles Bibliográficos
Autores principales: Duggan, William P., O’Connell, Emer, Prehn, Jochen H. M., Burke, John P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9499919/
https://www.ncbi.nlm.nih.gov/pubmed/35583632
http://dx.doi.org/10.1007/s11010-022-04456-7
Descripción
Sumario:Alternative splicing is implicated in each of the hallmarks of cancer, and is mechanised by various splicing factors. Serine-Arginine Protein Kinase 1 (SRPK1) is an enzyme which moderates the activity of splicing factors rich in serine/arginine domains. Here we review SRPK1’s relationship with various cancers by performing a systematic review of all relevant published data. Elevated SRPK1 expression correlates with advanced disease stage and poor survival in many epithelial derived cancers. Numerous pre-clinical studies investigating a host of different tumour types; have found increased SRPK1 expression to be associated with proliferation, invasion, migration and apoptosis in vitro as well as tumour growth, tumourigenicity and metastasis in vivo. Aberrant SRPK1 expression is implicated in various signalling pathways associated with oncogenesis, a number of which, such as the PI3K/AKT, NF-КB and TGF-Beta pathway, are implicated in multiple different cancers. SRPK1-targeting micro RNAs have been identified in a number of studies and shown to have an important role in regulating SRPK1 activity. SRPK1 expression is also closely related to the response of various tumours to platinum-based chemotherapeutic agents. Future clinical applications will likely focus on the role of SRPK1 as a biomarker of treatment resistance and the potential role of its inhibition.