Cargando…
Improving MHC class I antigen-processing predictions using representation learning and cleavage site-specific kernels
In this work, we propose a new deep-learning model, MHCrank, to predict the probability that a peptide will be processed for presentation by MHC class I molecules. We find that the performance of our model is significantly higher than that of two previously published baseline methods: MHCflurry and...
Autores principales: | Lawrence, Patrick J., Ning, Xia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9499997/ https://www.ncbi.nlm.nih.gov/pubmed/36160050 http://dx.doi.org/10.1016/j.crmeth.2022.100293 |
Ejemplares similares
-
Coevolution between MHC Class I and Antigen-Processing Genes in Salamanders
por: Palomar, Gemma, et al.
Publicado: (2021) -
Alternative Antigen Processing for MHC Class I: Multiple Roads Lead to Rome
por: Oliveira, Cláudia C., et al.
Publicado: (2015) -
Involvement of autophagy in MHC class I antigen presentation
por: Øynebråten, Inger
Publicado: (2020) -
Mechanistic diversity in MHC class I antigen recognition
por: Barbosa, Camila R. R., et al.
Publicado: (2021) -
Human Neonatal Dendritic Cells Are Competent in MHC Class I Antigen Processing and Presentation
por: Gold, Marielle C., et al.
Publicado: (2007)