Cargando…
Inflation of test accuracy due to data leakage in deep learning-based classification of OCT images
In the application of deep learning on optical coherence tomography (OCT) data, it is common to train classification networks using 2D images originating from volumetric data. Given the micrometer resolution of OCT systems, consecutive images are often very similar in both visible structures and noi...
Autores principales: | Tampu, Iulian Emil, Eklund, Anders, Haj-Hosseini, Neda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9500039/ https://www.ncbi.nlm.nih.gov/pubmed/36138025 http://dx.doi.org/10.1038/s41597-022-01618-6 |
Ejemplares similares
-
Does Anatomical Contextual Information Improve 3D U-Net-Based Brain Tumor Segmentation?
por: Tampu, Iulian Emil, et al.
Publicado: (2021) -
Inflated prediction accuracy of neuropsychiatric biomarkers caused by data leakage in feature selection
por: Shim, Miseon, et al.
Publicado: (2021) -
Refractive errors and corrections for OCT images in an inflated lung phantom
por: Golabchi, Ali, et al.
Publicado: (2012) -
OCT Macular Volume as a Predictor of Vascular Leakage in Uveitis
por: Chen, Xiuju, et al.
Publicado: (2022) -
Bayesian analysis of one‐inflated models for elusive population size estimation
por: Tuoto, Tiziana, et al.
Publicado: (2022)