Cargando…
A pipeline for automated deep learning liver segmentation (PADLLS) from contrast enhanced CT exams
Multiple studies have created state-of-the-art liver segmentation models using Deep Convolutional Neural Networks (DCNNs) such as the V-net and H-DenseUnet. Oversegmentation however continues to be a problem. We set forth to address these limitations by developing a an automated workflow that levera...
Autores principales: | Senthilvelan, Jayasuriya, Jamshidi, Neema |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9500060/ https://www.ncbi.nlm.nih.gov/pubmed/36138084 http://dx.doi.org/10.1038/s41598-022-20108-8 |
Ejemplares similares
-
A Deep Learning Pipeline to Automate High-Resolution Arterial Segmentation With or Without Intravenous Contrast
por: Chandrashekar, Anirudh, et al.
Publicado: (2022) -
Construction of a radiogenomic association map of pancreatic ductal adenocarcinoma
por: Jamshidi, Neema, et al.
Publicado: (2023) -
Automated segmentation of colorectal liver metastasis and liver ablation on contrast-enhanced CT images
por: Anderson, Brian M., et al.
Publicado: (2022) -
A fully automated deep learning pipeline for high-throughput colony segmentation and classification
por: Carl, Sarah H., et al.
Publicado: (2020) -
Advanced Deep Learning Approach to Automatically Segment Malignant Tumors and Ablation Zone in the Liver With Contrast-Enhanced CT
por: He, Kan, et al.
Publicado: (2021)