Cargando…
Indirect optimization of staphylokinase expression level in dicistronic auto-inducible system
Design of experiment (DOE) is a statistical approach for designing, performing, and interpreting a large set of data with the minimum number of tests. In our previous study, we developed a novel Hsp27 SILEX system for production of recombinant proteins. In the present study, we optimized indirectly...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9500143/ https://www.ncbi.nlm.nih.gov/pubmed/36138332 http://dx.doi.org/10.1186/s13568-022-01464-0 |
Sumario: | Design of experiment (DOE) is a statistical approach for designing, performing, and interpreting a large set of data with the minimum number of tests. In our previous study, we developed a novel Hsp27 SILEX system for production of recombinant proteins. In the present study, we optimized indirectly the most effective factors including inoculation load, self-induction temperature, and culture media on autoinduction of staphylokinase (SAK) expression using RSM methodology and fluorometry. The expression level of SAK was assayed at different runs after 6 h incubation at 90 rpm. The results indicated all parameters significantly affect the SAK expression level (p < 0.05). The optimum expression condition was obtained with an inoculation load of 0.05, a temperature of 25 °C, and TB culture medium. The analysis of variance with a R(2) value of 0.91 showed that a quadratic model well described this prediction (p < 0.05). Applying the optimized condition led to an approximately fourfold increase in the SAK expression level (from 1.3 to 5.2 µg/ml). Moreover, the recombinant protein was purified using immobilized metal affinity chromatography and the activity was also confirmed by semi-quantitative caseinolytic method. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13568-022-01464-0. |
---|