Cargando…

Decreased GZMB, NRP1, ITPR1, and SERPINB9 Transcripts Lead to Reduced Regulatory T Cells Suppressive Capacity in Generalized Vitiligo Patients

Generalized vitiligo (GV) is an autoimmune skin disease characterized by bilateral white patches over the entire body. Regulatory T cells (Tregs) maintain peripheral tolerance; however, they are found to be reduced in numbers and function in vitiligo patients. The exact mechanism for reduced Treg su...

Descripción completa

Detalles Bibliográficos
Autores principales: Giri, Prashant S., Bharti, Ankit H., Dwivedi, Mitesh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9500245/
https://www.ncbi.nlm.nih.gov/pubmed/36157881
http://dx.doi.org/10.1155/2022/3426717
_version_ 1784795175276511232
author Giri, Prashant S.
Bharti, Ankit H.
Dwivedi, Mitesh
author_facet Giri, Prashant S.
Bharti, Ankit H.
Dwivedi, Mitesh
author_sort Giri, Prashant S.
collection PubMed
description Generalized vitiligo (GV) is an autoimmune skin disease characterized by bilateral white patches over the entire body. Regulatory T cells (Tregs) maintain peripheral tolerance; however, they are found to be reduced in numbers and function in vitiligo patients. The exact mechanism for reduced Treg suppressive capacity is unknown. Therefore, we aimed to assess transcript levels of Tregs-associated immunosuppressive genes (GZMB, NRP1, PDCD1, FASLG, and TNFRS18), regulatory molecules of Tregs suppressive function (SERPINB9, ITPR1, and UBASH3A), and Treg-associated transcription factors (GATA2, GATA3, RUNX1, STAT3, and STAT5) in 52 GV patients and 48 controls by real-time PCR (qPCR). We found significantly reduced GZMB, NRP1, SERPINB9, and ITPR1 transcripts in GV Tregs compared to controls (p = 0.03, p = 0.023, p = 0.0045, and p < 0.0001, respectively). There were 0.44-, 0.45-, 0.32-, and 0.54-fold decrease in GZMB, NRP1, SERPINB9, and ITPR1 transcripts in GV Tregs. Additionally, disease activity and severity-based analyses revealed significantly decreased GZMB (p = 0.019 and 0.034), SERPINB9 (p = 0.031 and p = 0.035), and ITPR1 (p = 0.0003 and p = 0.034) transcripts in active vitiligo and severe GV patients' Tregs. Interestingly, we found a positive correlation for ITPR1 with GZMB (r = 0.45, p = 0.0009) and SERPINB9 (r = 0.52, p = 0.001) transcripts in GV Tregs. Moreover, we found positive correlation for percentage Treg mediated suppression of CD4(+) and CD8(+)T cells with ITPR1 (r = 0.54; r = 0.49), GZMB (r = 0.61; r = 0.58), NRP1 (r = 0.55; r = 0.52), and SERPINB9 (r = 0.56; r = 0.48) in GV Tregs. Further, calcium treatment of Tregs resulted into significantly increased ITPR1, SERPINB9, and GZMB transcripts in GV Tregs (p = 0.023, p = 0.0345, p = 0.02). Overall, our results for the first time revealed the crucial role of GZMB, NRP1, SERPINB9, and ITPR1 transcripts in decreased Treg suppressive capacity leading to GV pathogenesis, progression, and severity. In addition, our study highlighted that ITPR1 might be linked with decreased GZMB and NRP1 expression in GV Tregs. Moreover, our study for the first time suggest that increased SERPINB9 transcripts may lead to endogenous granzyme B-mediated Tregs apoptosis, and calcium treatment of Tregs may improve the Treg suppressive capacity. These findings may further aid in development of Treg-based therapeutics for GV.
format Online
Article
Text
id pubmed-9500245
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-95002452022-09-24 Decreased GZMB, NRP1, ITPR1, and SERPINB9 Transcripts Lead to Reduced Regulatory T Cells Suppressive Capacity in Generalized Vitiligo Patients Giri, Prashant S. Bharti, Ankit H. Dwivedi, Mitesh J Immunol Res Research Article Generalized vitiligo (GV) is an autoimmune skin disease characterized by bilateral white patches over the entire body. Regulatory T cells (Tregs) maintain peripheral tolerance; however, they are found to be reduced in numbers and function in vitiligo patients. The exact mechanism for reduced Treg suppressive capacity is unknown. Therefore, we aimed to assess transcript levels of Tregs-associated immunosuppressive genes (GZMB, NRP1, PDCD1, FASLG, and TNFRS18), regulatory molecules of Tregs suppressive function (SERPINB9, ITPR1, and UBASH3A), and Treg-associated transcription factors (GATA2, GATA3, RUNX1, STAT3, and STAT5) in 52 GV patients and 48 controls by real-time PCR (qPCR). We found significantly reduced GZMB, NRP1, SERPINB9, and ITPR1 transcripts in GV Tregs compared to controls (p = 0.03, p = 0.023, p = 0.0045, and p < 0.0001, respectively). There were 0.44-, 0.45-, 0.32-, and 0.54-fold decrease in GZMB, NRP1, SERPINB9, and ITPR1 transcripts in GV Tregs. Additionally, disease activity and severity-based analyses revealed significantly decreased GZMB (p = 0.019 and 0.034), SERPINB9 (p = 0.031 and p = 0.035), and ITPR1 (p = 0.0003 and p = 0.034) transcripts in active vitiligo and severe GV patients' Tregs. Interestingly, we found a positive correlation for ITPR1 with GZMB (r = 0.45, p = 0.0009) and SERPINB9 (r = 0.52, p = 0.001) transcripts in GV Tregs. Moreover, we found positive correlation for percentage Treg mediated suppression of CD4(+) and CD8(+)T cells with ITPR1 (r = 0.54; r = 0.49), GZMB (r = 0.61; r = 0.58), NRP1 (r = 0.55; r = 0.52), and SERPINB9 (r = 0.56; r = 0.48) in GV Tregs. Further, calcium treatment of Tregs resulted into significantly increased ITPR1, SERPINB9, and GZMB transcripts in GV Tregs (p = 0.023, p = 0.0345, p = 0.02). Overall, our results for the first time revealed the crucial role of GZMB, NRP1, SERPINB9, and ITPR1 transcripts in decreased Treg suppressive capacity leading to GV pathogenesis, progression, and severity. In addition, our study highlighted that ITPR1 might be linked with decreased GZMB and NRP1 expression in GV Tregs. Moreover, our study for the first time suggest that increased SERPINB9 transcripts may lead to endogenous granzyme B-mediated Tregs apoptosis, and calcium treatment of Tregs may improve the Treg suppressive capacity. These findings may further aid in development of Treg-based therapeutics for GV. Hindawi 2022-09-15 /pmc/articles/PMC9500245/ /pubmed/36157881 http://dx.doi.org/10.1155/2022/3426717 Text en Copyright © 2022 Prashant S. Giri et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Giri, Prashant S.
Bharti, Ankit H.
Dwivedi, Mitesh
Decreased GZMB, NRP1, ITPR1, and SERPINB9 Transcripts Lead to Reduced Regulatory T Cells Suppressive Capacity in Generalized Vitiligo Patients
title Decreased GZMB, NRP1, ITPR1, and SERPINB9 Transcripts Lead to Reduced Regulatory T Cells Suppressive Capacity in Generalized Vitiligo Patients
title_full Decreased GZMB, NRP1, ITPR1, and SERPINB9 Transcripts Lead to Reduced Regulatory T Cells Suppressive Capacity in Generalized Vitiligo Patients
title_fullStr Decreased GZMB, NRP1, ITPR1, and SERPINB9 Transcripts Lead to Reduced Regulatory T Cells Suppressive Capacity in Generalized Vitiligo Patients
title_full_unstemmed Decreased GZMB, NRP1, ITPR1, and SERPINB9 Transcripts Lead to Reduced Regulatory T Cells Suppressive Capacity in Generalized Vitiligo Patients
title_short Decreased GZMB, NRP1, ITPR1, and SERPINB9 Transcripts Lead to Reduced Regulatory T Cells Suppressive Capacity in Generalized Vitiligo Patients
title_sort decreased gzmb, nrp1, itpr1, and serpinb9 transcripts lead to reduced regulatory t cells suppressive capacity in generalized vitiligo patients
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9500245/
https://www.ncbi.nlm.nih.gov/pubmed/36157881
http://dx.doi.org/10.1155/2022/3426717
work_keys_str_mv AT giriprashants decreasedgzmbnrp1itpr1andserpinb9transcriptsleadtoreducedregulatorytcellssuppressivecapacityingeneralizedvitiligopatients
AT bhartiankith decreasedgzmbnrp1itpr1andserpinb9transcriptsleadtoreducedregulatorytcellssuppressivecapacityingeneralizedvitiligopatients
AT dwivedimitesh decreasedgzmbnrp1itpr1andserpinb9transcriptsleadtoreducedregulatorytcellssuppressivecapacityingeneralizedvitiligopatients