Cargando…
Radiomics Features Based on MRI-ADC Maps of Patients with Breast Cancer: Relationship with Lesion Size, Features Stability, and Model Accuracy
OBJECTIVE: To predict breast cancer molecular subtypes with neural networks based on magnetic resonance imaging apparent diffusion coefficient (ADC) radiomics and to detect the relation of lesion size with the stability of radiomics features. METHODS: This retrospective study included 221 consecutiv...
Autores principales: | BAYSAL, Begumhan, BAYSAL, Hakan, ESER, Mehmet Bilgin, DOGAN, Mahmut Bilal, ALIMOGLU, Orhan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Galenos Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9500326/ https://www.ncbi.nlm.nih.gov/pubmed/36128858 http://dx.doi.org/10.4274/MMJ.galenos.2022.70094 |
Ejemplares similares
-
Multivariable Diagnostic Prediction Model to Detect Hormone Secretion Profile From T2W MRI Radiomics with Artificial Neural Networks in Pituitary Adenomas
por: BAYSAL, Begumhan, et al.
Publicado: (2022) -
Commentary on “A Universal Craniometric Index for Establishing the Diagnosis of Basilar Invagination”
por: Eser, Mehmet Bilgin, et al.
Publicado: (2021) -
The effects of clinicopathological and imaging findings on recurrence and survival in mammary Paget’s disease
por: Baysal, Hakan, et al.
Publicado: (2023) -
False positivity of magnetic resonance imaging under the effect of granulocyte-colony stimulating factor in a child with leukemia
por: Cakir, Fatma Betul, et al.
Publicado: (2013) -
Cancer surgery during the Covid-19 pandemic in Turkey
por: Alimoglu, Orhan, et al.
Publicado: (2020)