Cargando…
Machine Learning-based Prediction of HBV-related Hepatocellular Carcinoma and Detection of Key Candidate Biomarkers
OBJECTIVE: This study aimed to classify open-access gene expression data of patients with hepatitis B virus-related hepatocellular carcinoma (HBV + HCC) and chronic HBV without HCC (HBV alone) using the XGBoost method, one of the machine learning methods, and reveal important genes that may cause HC...
Autores principales: | KUCUKAKCALI, Zeynep, AKBULUT, Sami, COLAK, Cemil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Galenos Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9500333/ https://www.ncbi.nlm.nih.gov/pubmed/36128800 http://dx.doi.org/10.4274/MMJ.galenos.2022.39049 |
Ejemplares similares
-
Value of fecal calprotectin in prediction of acute appendicitis based on a proposed model of machine learning
por: Küçükakçali, Zeynep, et al.
Publicado: (2023) -
Predicting Duodenal Cancer Risk in Patients with Familial Adenomatous Polyposis Using Machine Learning Model
por: Akbulut, Sami, et al.
Publicado: (2023) -
Artificial intelligence-based prediction of molecular and genetic markers for hepatitis C–related hepatocellular carcinoma
por: Colak, Cemil, et al.
Publicado: (2023) -
Modeling Based on Ensemble Learning Methods for Detection of Diagnostic Biomarkers from LncRNA Data in Rats Treated with Cis-Platinum-Induced Hepatotoxicity
por: Kucukakcali, Zeynep, et al.
Publicado: (2023) -
Effect of the COVID-19 Pandemic on the Psychological Health of Patients Who Underwent Liver Transplantation Due to Hepatocellular Carcinoma
por: Akbulut, Sami, et al.
Publicado: (2023)