Cargando…
Transcriptome analysis in an AEG‑1‑deficient neuronal HT22 cell line
Astrocyte elevated gene-1 (AEG-1) is a key regulatory factor of progression in multiple types of tumor and neurodegenerative disease development. AEG-1 is associated with glutamate excitotoxicity due to its reported function of repressing excitatory amino acid transporter 2 expression in astrocytes....
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9500495/ https://www.ncbi.nlm.nih.gov/pubmed/36237597 http://dx.doi.org/10.3892/etm.2022.11607 |
_version_ | 1784795234818850816 |
---|---|
author | Liu, Kunmei Wan, Panpan Huang, Yue Wang, Bin Wang, Xuequan Zhang, Rui Guo, Le |
author_facet | Liu, Kunmei Wan, Panpan Huang, Yue Wang, Bin Wang, Xuequan Zhang, Rui Guo, Le |
author_sort | Liu, Kunmei |
collection | PubMed |
description | Astrocyte elevated gene-1 (AEG-1) is a key regulatory factor of progression in multiple types of tumor and neurodegenerative disease development. AEG-1 is associated with glutamate excitotoxicity due to its reported function of repressing excitatory amino acid transporter 2 expression in astrocytes. Although the function of AEG-1 has been demonstrated in neurological disorders, such as Alzheimer's disease and amyotrophic lateral sclerosis, the underlying mechanism of neuronal AEG-1 function remains unclear. The aim of the present study was to clarify the function and related mechanism of AEG-1 in neurons. A stable AEG-1-deficient HT22 neuronal cell line was constructed using CRISPR/Cas9 gene-editing technology. Reverse transcription-quantitative PCR and western blotting were carried out to analyze the knockdown efficiency of AEG-1-deficient HT22 cell line. RNA Sanger sequencing analysis was performed in AEG-1-deficient HT22 cells and wild-type HT22 cells without knockout (KO). Results from RNA sequencing revealed that AEG-1 modulated neuronal morphology and development by regulating the expression of numerous genes, such as ubiquitin C, C-X-C motif chemokine ligand 1, MMP9, Notch1, neuropilin 1 and ephrin type-A receptor 4. In addition, AEG-1 deficiency impacted several signaling pathways by mediating cell survival differentiation, apoptosis, and migration; this included the TNF-α pathway, the NF-κB pathway, the MAPK signaling pathway, the Notch signaling pathway and Axon guidance. Downregulation in cellular ion homeostasis, including ion channel function and neurotransmitter release, were observed after knocking out AEG-1 expression. Collectively, the present study provides insights into AEG-1-dependent gene regulation and signaling pathway transduction in neurons. The results of the present study may be applied for improving the understanding of AEG-1-associated central nervous system diseases. |
format | Online Article Text |
id | pubmed-9500495 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-95004952022-10-12 Transcriptome analysis in an AEG‑1‑deficient neuronal HT22 cell line Liu, Kunmei Wan, Panpan Huang, Yue Wang, Bin Wang, Xuequan Zhang, Rui Guo, Le Exp Ther Med Articles Astrocyte elevated gene-1 (AEG-1) is a key regulatory factor of progression in multiple types of tumor and neurodegenerative disease development. AEG-1 is associated with glutamate excitotoxicity due to its reported function of repressing excitatory amino acid transporter 2 expression in astrocytes. Although the function of AEG-1 has been demonstrated in neurological disorders, such as Alzheimer's disease and amyotrophic lateral sclerosis, the underlying mechanism of neuronal AEG-1 function remains unclear. The aim of the present study was to clarify the function and related mechanism of AEG-1 in neurons. A stable AEG-1-deficient HT22 neuronal cell line was constructed using CRISPR/Cas9 gene-editing technology. Reverse transcription-quantitative PCR and western blotting were carried out to analyze the knockdown efficiency of AEG-1-deficient HT22 cell line. RNA Sanger sequencing analysis was performed in AEG-1-deficient HT22 cells and wild-type HT22 cells without knockout (KO). Results from RNA sequencing revealed that AEG-1 modulated neuronal morphology and development by regulating the expression of numerous genes, such as ubiquitin C, C-X-C motif chemokine ligand 1, MMP9, Notch1, neuropilin 1 and ephrin type-A receptor 4. In addition, AEG-1 deficiency impacted several signaling pathways by mediating cell survival differentiation, apoptosis, and migration; this included the TNF-α pathway, the NF-κB pathway, the MAPK signaling pathway, the Notch signaling pathway and Axon guidance. Downregulation in cellular ion homeostasis, including ion channel function and neurotransmitter release, were observed after knocking out AEG-1 expression. Collectively, the present study provides insights into AEG-1-dependent gene regulation and signaling pathway transduction in neurons. The results of the present study may be applied for improving the understanding of AEG-1-associated central nervous system diseases. D.A. Spandidos 2022-09-13 /pmc/articles/PMC9500495/ /pubmed/36237597 http://dx.doi.org/10.3892/etm.2022.11607 Text en Copyright: © Liu et al. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Liu, Kunmei Wan, Panpan Huang, Yue Wang, Bin Wang, Xuequan Zhang, Rui Guo, Le Transcriptome analysis in an AEG‑1‑deficient neuronal HT22 cell line |
title | Transcriptome analysis in an AEG‑1‑deficient neuronal HT22 cell line |
title_full | Transcriptome analysis in an AEG‑1‑deficient neuronal HT22 cell line |
title_fullStr | Transcriptome analysis in an AEG‑1‑deficient neuronal HT22 cell line |
title_full_unstemmed | Transcriptome analysis in an AEG‑1‑deficient neuronal HT22 cell line |
title_short | Transcriptome analysis in an AEG‑1‑deficient neuronal HT22 cell line |
title_sort | transcriptome analysis in an aeg‑1‑deficient neuronal ht22 cell line |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9500495/ https://www.ncbi.nlm.nih.gov/pubmed/36237597 http://dx.doi.org/10.3892/etm.2022.11607 |
work_keys_str_mv | AT liukunmei transcriptomeanalysisinanaeg1deficientneuronalht22cellline AT wanpanpan transcriptomeanalysisinanaeg1deficientneuronalht22cellline AT huangyue transcriptomeanalysisinanaeg1deficientneuronalht22cellline AT wangbin transcriptomeanalysisinanaeg1deficientneuronalht22cellline AT wangxuequan transcriptomeanalysisinanaeg1deficientneuronalht22cellline AT zhangrui transcriptomeanalysisinanaeg1deficientneuronalht22cellline AT guole transcriptomeanalysisinanaeg1deficientneuronalht22cellline |