Cargando…
Machine Learning for Evaluating the Cytotoxicity of Mixtures of Nano-TiO(2) and Heavy Metals: QSAR Model Apply Random Forest Algorithm after Clustering Analysis
With the development and application of nanomaterials, their impact on the environment and organisms has attracted attention. As a common nanomaterial, nano-titanium dioxide (nano-TiO(2)) has adsorption properties to heavy metals in the environment. Quantitative structure-activity relationship (QSAR...
Autores principales: | Sang, Leqi, Wang, Yunlin, Zong, Cheng, Wang, Pengfei, Zhang, Huazhong, Guo, Dan, Yuan, Beilei, Pan, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9500633/ https://www.ncbi.nlm.nih.gov/pubmed/36144857 http://dx.doi.org/10.3390/molecules27186125 |
Ejemplares similares
-
Prediction of cytotoxicity of heavy metals adsorbed on nano-TiO(2) with periodic table descriptors using machine learning approaches
por: Roy, Joyita, et al.
Publicado: (2023) -
Toxicity of a Binary Mixture of TiO(2) and Imidacloprid Applied to Chlorella vulgaris
por: Adochite, Cristina, et al.
Publicado: (2021) -
Experimental Characterization of Viscoelastic Behaviors of Nano-TiO(2)/CaCO(3) Modified Asphalt and Asphalt Mixture
por: Wu, Chunli, et al.
Publicado: (2021) -
The Application of Nano-TiO(2) Photo Semiconductors in Agriculture
por: Wang, Yan, et al.
Publicado: (2016) -
Comparison of the Phase Transition and Degradation of Methylene Blue of TiO(2), TiO(2)/Montmorillonite Mixture and TiO(2)/Montmorillonite Composite
por: Zeng, Li, et al.
Publicado: (2019)