Cargando…
Pre-operative Machine Learning for Heart Transplant Patients Bridged with Temporary Mechanical Circulatory Support †
Background: Existing prediction models for post-transplant mortality in patients bridged to heart transplantation with temporary mechanical circulatory support (tMCS) perform poorly. A more reliable model would allow clinicians to provide better pre-operative risk assessment and develop more targete...
Autores principales: | Shou, Benjamin L., Chatterjee, Devina, Russel, Joseph W., Zhou, Alice L., Florissi, Isabella S., Lewis, Tabatha, Verma, Arjun, Benharash, Peyman, Choi, Chun Woo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9500687/ https://www.ncbi.nlm.nih.gov/pubmed/36135456 http://dx.doi.org/10.3390/jcdd9090311 |
Ejemplares similares
-
Machine learning-based modeling of acute respiratory failure following emergency general surgery operations
por: Hadaya, Joseph, et al.
Publicado: (2022) -
Identifying the origin of socioeconomic disparities in outcomes of major elective operations()
por: Williamson, Catherine G., et al.
Publicado: (2023) -
Bridge to transplantation from mechanical circulatory support: a narrative review
por: Zhou, Alice L., et al.
Publicado: (2021) -
Insurance-Based Disparities in Congenital Cardiac Operations in the Era of the Affordable Care Act
por: Williamson, Catherine G., et al.
Publicado: (2023) -
Patterns of Use of Temporary Mechanical Circulatory Support as a Bridge to Transplant During the Coronavirus Disease 2019 Pandemic
por: Nordan, Taylor, et al.
Publicado: (2020)