Cargando…
Predicting Mortality Using Machine Learning Algorithms in Patients Who Require Renal Replacement Therapy in the Critical Care Unit
Background: General severity of illness scores are not well calibrated to predict mortality among patients receiving renal replacement therapy (RRT) for acute kidney injury (AKI). We developed machine learning models to make mortality prediction and compared their performance to that of the Sequenti...
Autores principales: | Chang, Hsin-Hsiung, Chiang, Jung-Hsien, Wang, Chi-Shiang, Chiu, Ping-Fang, Abdel-Kader, Khaled, Chen, Huiwen, Siew, Edward D., Yabes, Jonathan, Murugan, Raghavan, Clermont, Gilles, Palevsky, Paul M., Jhamb, Manisha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9500742/ https://www.ncbi.nlm.nih.gov/pubmed/36142936 http://dx.doi.org/10.3390/jcm11185289 |
Ejemplares similares
-
Association of Self-Rated Health With Functional Limitations in Patients With CKD
por: Lee, Jacqueline, et al.
Publicado: (2021) -
Precision net ultrafiltration dosing in continuous kidney replacement therapy: a practical approach
por: Murugan, Raghavan, et al.
Publicado: (2023) -
Ecological momentary assessment of fatigue, sleepiness, and exhaustion in ESKD
por: Abdel-Kader, Khaled, et al.
Publicado: (2014) -
Association of Net Ultrafiltration Rate With Mortality Among Critically Ill Adults With Acute Kidney Injury Receiving Continuous Venovenous Hemodiafiltration: A Secondary Analysis of the Randomized Evaluation of Normal vs Augmented Level (RENAL) of Renal Replacement Therapy Trial
por: Murugan, Raghavan, et al.
Publicado: (2019) -
Survey of U.S. Critical Care Practitioners on Net Ultrafiltration Prescription and Practice Among Critically Ill Patients Receiving Kidney Replacement Therapy
por: Chen, Huiwen, et al.
Publicado: (2021)