Cargando…

Determination of Apoptotic Mechanism of Action of Tetrabromobisphenol A and Tetrabromobisphenol S in Human Peripheral Blood Mononuclear Cells: A Comparative Study

Background: Tetrabromobisphenol A (TBBPA) is the most commonly used brominated flame retardant (BFR) in the industry. TBBPA has been determined in environmental samples, food, tap water, dust as well as outdoor and indoor air and in the human body. Studies have also shown the toxic potential of this...

Descripción completa

Detalles Bibliográficos
Autores principales: Barańska, Anna, Bukowska, Bożena, Michałowicz, Jaromir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9500834/
https://www.ncbi.nlm.nih.gov/pubmed/36144785
http://dx.doi.org/10.3390/molecules27186052
Descripción
Sumario:Background: Tetrabromobisphenol A (TBBPA) is the most commonly used brominated flame retardant (BFR) in the industry. TBBPA has been determined in environmental samples, food, tap water, dust as well as outdoor and indoor air and in the human body. Studies have also shown the toxic potential of this substance. In search of a better and less toxic BFR, tetrabromobisphenol S (TBBPS) has been developed in order to replace TBBPA in the industry. There is a lack of data on the toxic effects of TBBPS, while no study has explored apoptotic mechanism of action of TBBPA and TBBPS in human leukocytes. Methods: The cells were separated from leucocyte-platelet buffy coat and were incubated with studied compounds in concentrations ranging from 0.01 to 50 µg/mL for 24 h. In order to explore the apoptotic mechanism of action of tested BFRs, phosphatidylserine externalization at cellular membrane (the number of apoptotic cells), cytosolic calcium ion and transmembrane mitochondrial potential levels, caspase-8, -9 and -3 activation, as well as PARP-1 cleavage, DNA fragmentation and chromatin condensation in PBMCs were determined. Results: TBBPA and TBBPS triggered apoptosis in human PBMCs as they changed all tested parameters in the incubated cells. It was also observed that the mitochondrial pathway was mainly involved in the apoptotic action of studied compounds. Conclusions: It was found that TBBPS, and more strongly TBBPA, triggered apoptosis in human PBMCs. Generally, the mitochondrial pathway was involved in the apoptotic action of tested compounds; nevertheless, TBBPS more strongly than TBBPA caused intrinsic pathway activation.