Cargando…

Analysis of Microplastics in Aquatic Shellfish by Pyrolysis–Gas Chromatography/Mass Spectrometry after Alkali Digestion and Solvent Extraction

Microplastics are harmful to both marine life and humans. Herein, a pyrolysis–gas chromatography–mass spectrometry (Py-GC/MS) technique for the detection of microplastics in aquatic shellfish is demonstrated. The organic matter in aquatic shellfish was removed by alkali digestion. Subsequently, usin...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhong, Yingying, Bao, Qibei, Yuan, Lifeng, Liu, Jiawen, Cai, Yan, Chen, Xianfeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9500840/
https://www.ncbi.nlm.nih.gov/pubmed/36146034
http://dx.doi.org/10.3390/polym14183888
Descripción
Sumario:Microplastics are harmful to both marine life and humans. Herein, a pyrolysis–gas chromatography–mass spectrometry (Py-GC/MS) technique for the detection of microplastics in aquatic shellfish is demonstrated. The organic matter in aquatic shellfish was removed by alkali digestion. Subsequently, using hexafluoroisopropanol as the extraction solvent, the extraction method was optimized. The influence of the digestion process on the nature of microplastics was investigated by analyzing the samples before and after the alkali treatment via infrared spectrometry, laser particle sizing, and scanning electron microscopy. Spiked recovery experiments and an analysis of actual samples were performed using PA6 and PA66 as analytes. A quantitative analysis of the characteristic ion fragment produced by high-temperature cracking was performed after chromatographic separation and mass spectrometry identification. The linear range of this method for PA6 and PA66 was 2–64 μg. The limits of detection of PA6 and PA66 were 0.2 and 0.6 μg, while the limits of quantitation were 0.6 and 2.0 μg, respectively. Recovery ranged from 74.4 to 101.62%, with a precision of 4.53–7.56%. The results suggest that the Py-GC/MS technique is suitable for the analysis and detection of trace microplastics in aquatic shellfish.