Cargando…

Impacts of Japanese Larch Invasion on Soil Bacterial Communities of the Giant Panda Habitat in the Qinling Mountains

Japanese larch (Larix kaempferi), a non-native tree species, has been widely planted in the Qinling Mountains since the last century, but it does not meet the habitat needs of giant pandas (Ailuropoda melanoleuca), mainly because of food, further causing habitat degradation and fragmentation. Howeve...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhuang, Yuqi, Xu, Yadong, Yang, Meiling, Zhao, Huiru, Ye, Xinping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9500889/
https://www.ncbi.nlm.nih.gov/pubmed/36144409
http://dx.doi.org/10.3390/microorganisms10091807
_version_ 1784795333771919360
author Zhuang, Yuqi
Xu, Yadong
Yang, Meiling
Zhao, Huiru
Ye, Xinping
author_facet Zhuang, Yuqi
Xu, Yadong
Yang, Meiling
Zhao, Huiru
Ye, Xinping
author_sort Zhuang, Yuqi
collection PubMed
description Japanese larch (Larix kaempferi), a non-native tree species, has been widely planted in the Qinling Mountains since the last century, but it does not meet the habitat needs of giant pandas (Ailuropoda melanoleuca), mainly because of food, further causing habitat degradation and fragmentation. However, how soil microorganisms, considered as predictors of the soil environment, respond to Japanese larch remains poorly explored, especially compared with native forests. Here, we collected 40 soil samples from plantation, bamboo, and natural (excluding bamboo) forests in the Changqing Nature Reserve and Foping Nature Reserve in Qinling to compare soil bacterial community composition and diversity using high-throughput sequencing of bacterial 16S rRNA genes. The soil chemical properties and bacterial communities differed noticeably under forest-type classification patterns. The soil of the Japanese larch planted forests underwent substantial degradation, with higher acidity, lower alpha diversity, and more significant enrichment in the oligotrophic bacteria Acidobacteria and Verrucomicrobia, in contrast to the other two primary forests with elevated soil nutrient levels. The application of PICRUSt2 indicated the down-regulation of amino acid-related metabolism in planted forests. Moreover, pH was the primary factor determining the whole bacterial community structures. To avoid the uncertainty of a single sampling region, we chose different sampling sites that could be considered as geographical factors, possibly due to environmental heterogeneity or dispersal limitations, which also explained the specific community patterns of microorganisms. Overall, this paper may help provide a scientific basis for future revegetation in giant panda habitats, highlighting the urgent need for ecological restoration and sustainable forestry management.
format Online
Article
Text
id pubmed-9500889
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-95008892022-09-24 Impacts of Japanese Larch Invasion on Soil Bacterial Communities of the Giant Panda Habitat in the Qinling Mountains Zhuang, Yuqi Xu, Yadong Yang, Meiling Zhao, Huiru Ye, Xinping Microorganisms Article Japanese larch (Larix kaempferi), a non-native tree species, has been widely planted in the Qinling Mountains since the last century, but it does not meet the habitat needs of giant pandas (Ailuropoda melanoleuca), mainly because of food, further causing habitat degradation and fragmentation. However, how soil microorganisms, considered as predictors of the soil environment, respond to Japanese larch remains poorly explored, especially compared with native forests. Here, we collected 40 soil samples from plantation, bamboo, and natural (excluding bamboo) forests in the Changqing Nature Reserve and Foping Nature Reserve in Qinling to compare soil bacterial community composition and diversity using high-throughput sequencing of bacterial 16S rRNA genes. The soil chemical properties and bacterial communities differed noticeably under forest-type classification patterns. The soil of the Japanese larch planted forests underwent substantial degradation, with higher acidity, lower alpha diversity, and more significant enrichment in the oligotrophic bacteria Acidobacteria and Verrucomicrobia, in contrast to the other two primary forests with elevated soil nutrient levels. The application of PICRUSt2 indicated the down-regulation of amino acid-related metabolism in planted forests. Moreover, pH was the primary factor determining the whole bacterial community structures. To avoid the uncertainty of a single sampling region, we chose different sampling sites that could be considered as geographical factors, possibly due to environmental heterogeneity or dispersal limitations, which also explained the specific community patterns of microorganisms. Overall, this paper may help provide a scientific basis for future revegetation in giant panda habitats, highlighting the urgent need for ecological restoration and sustainable forestry management. MDPI 2022-09-09 /pmc/articles/PMC9500889/ /pubmed/36144409 http://dx.doi.org/10.3390/microorganisms10091807 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhuang, Yuqi
Xu, Yadong
Yang, Meiling
Zhao, Huiru
Ye, Xinping
Impacts of Japanese Larch Invasion on Soil Bacterial Communities of the Giant Panda Habitat in the Qinling Mountains
title Impacts of Japanese Larch Invasion on Soil Bacterial Communities of the Giant Panda Habitat in the Qinling Mountains
title_full Impacts of Japanese Larch Invasion on Soil Bacterial Communities of the Giant Panda Habitat in the Qinling Mountains
title_fullStr Impacts of Japanese Larch Invasion on Soil Bacterial Communities of the Giant Panda Habitat in the Qinling Mountains
title_full_unstemmed Impacts of Japanese Larch Invasion on Soil Bacterial Communities of the Giant Panda Habitat in the Qinling Mountains
title_short Impacts of Japanese Larch Invasion on Soil Bacterial Communities of the Giant Panda Habitat in the Qinling Mountains
title_sort impacts of japanese larch invasion on soil bacterial communities of the giant panda habitat in the qinling mountains
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9500889/
https://www.ncbi.nlm.nih.gov/pubmed/36144409
http://dx.doi.org/10.3390/microorganisms10091807
work_keys_str_mv AT zhuangyuqi impactsofjapaneselarchinvasiononsoilbacterialcommunitiesofthegiantpandahabitatintheqinlingmountains
AT xuyadong impactsofjapaneselarchinvasiononsoilbacterialcommunitiesofthegiantpandahabitatintheqinlingmountains
AT yangmeiling impactsofjapaneselarchinvasiononsoilbacterialcommunitiesofthegiantpandahabitatintheqinlingmountains
AT zhaohuiru impactsofjapaneselarchinvasiononsoilbacterialcommunitiesofthegiantpandahabitatintheqinlingmountains
AT yexinping impactsofjapaneselarchinvasiononsoilbacterialcommunitiesofthegiantpandahabitatintheqinlingmountains