Cargando…
Extended N-Terminal Acetyltransferase Naa50 in Filamentous Fungi Adds to Naa50 Diversity
Most eukaryotic proteins are N-terminally acetylated by a set of Nα acetyltransferases (NATs). This ancient and ubiquitous modification plays a fundamental role in protein homeostasis, while mutations are linked to human diseases and phenotypic defects. In particular, Naa50 features species-specific...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9500918/ https://www.ncbi.nlm.nih.gov/pubmed/36142717 http://dx.doi.org/10.3390/ijms231810805 |
_version_ | 1784795341408698368 |
---|---|
author | Weidenhausen, Jonas Kopp, Jürgen Ruger-Herreros, Carmen Stein, Frank Haberkant, Per Lapouge, Karine Sinning, Irmgard |
author_facet | Weidenhausen, Jonas Kopp, Jürgen Ruger-Herreros, Carmen Stein, Frank Haberkant, Per Lapouge, Karine Sinning, Irmgard |
author_sort | Weidenhausen, Jonas |
collection | PubMed |
description | Most eukaryotic proteins are N-terminally acetylated by a set of Nα acetyltransferases (NATs). This ancient and ubiquitous modification plays a fundamental role in protein homeostasis, while mutations are linked to human diseases and phenotypic defects. In particular, Naa50 features species-specific differences, as it is inactive in yeast but active in higher eukaryotes. Together with NatA, it engages in NatE complex formation for cotranslational acetylation. Here, we report Naa50 homologs from the filamentous fungi Chaetomium thermophilum and Neurospora crassa with significant N- and C-terminal extensions to the conserved GNAT domain. Structural and biochemical analyses show that CtNaa50 shares the GNAT structure and substrate specificity with other homologs. However, in contrast to previously analyzed Naa50 proteins, it does not form NatE. The elongated N-terminus increases Naa50 thermostability and binds to dynein light chain protein 1, while our data suggest that conserved positive patches in the C-terminus allow for ribosome binding independent of NatA. Our study provides new insights into the many facets of Naa50 and highlights the diversification of NATs during evolution. |
format | Online Article Text |
id | pubmed-9500918 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95009182022-09-24 Extended N-Terminal Acetyltransferase Naa50 in Filamentous Fungi Adds to Naa50 Diversity Weidenhausen, Jonas Kopp, Jürgen Ruger-Herreros, Carmen Stein, Frank Haberkant, Per Lapouge, Karine Sinning, Irmgard Int J Mol Sci Article Most eukaryotic proteins are N-terminally acetylated by a set of Nα acetyltransferases (NATs). This ancient and ubiquitous modification plays a fundamental role in protein homeostasis, while mutations are linked to human diseases and phenotypic defects. In particular, Naa50 features species-specific differences, as it is inactive in yeast but active in higher eukaryotes. Together with NatA, it engages in NatE complex formation for cotranslational acetylation. Here, we report Naa50 homologs from the filamentous fungi Chaetomium thermophilum and Neurospora crassa with significant N- and C-terminal extensions to the conserved GNAT domain. Structural and biochemical analyses show that CtNaa50 shares the GNAT structure and substrate specificity with other homologs. However, in contrast to previously analyzed Naa50 proteins, it does not form NatE. The elongated N-terminus increases Naa50 thermostability and binds to dynein light chain protein 1, while our data suggest that conserved positive patches in the C-terminus allow for ribosome binding independent of NatA. Our study provides new insights into the many facets of Naa50 and highlights the diversification of NATs during evolution. MDPI 2022-09-16 /pmc/articles/PMC9500918/ /pubmed/36142717 http://dx.doi.org/10.3390/ijms231810805 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Weidenhausen, Jonas Kopp, Jürgen Ruger-Herreros, Carmen Stein, Frank Haberkant, Per Lapouge, Karine Sinning, Irmgard Extended N-Terminal Acetyltransferase Naa50 in Filamentous Fungi Adds to Naa50 Diversity |
title | Extended N-Terminal Acetyltransferase Naa50 in Filamentous Fungi Adds to Naa50 Diversity |
title_full | Extended N-Terminal Acetyltransferase Naa50 in Filamentous Fungi Adds to Naa50 Diversity |
title_fullStr | Extended N-Terminal Acetyltransferase Naa50 in Filamentous Fungi Adds to Naa50 Diversity |
title_full_unstemmed | Extended N-Terminal Acetyltransferase Naa50 in Filamentous Fungi Adds to Naa50 Diversity |
title_short | Extended N-Terminal Acetyltransferase Naa50 in Filamentous Fungi Adds to Naa50 Diversity |
title_sort | extended n-terminal acetyltransferase naa50 in filamentous fungi adds to naa50 diversity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9500918/ https://www.ncbi.nlm.nih.gov/pubmed/36142717 http://dx.doi.org/10.3390/ijms231810805 |
work_keys_str_mv | AT weidenhausenjonas extendednterminalacetyltransferasenaa50infilamentousfungiaddstonaa50diversity AT koppjurgen extendednterminalacetyltransferasenaa50infilamentousfungiaddstonaa50diversity AT rugerherreroscarmen extendednterminalacetyltransferasenaa50infilamentousfungiaddstonaa50diversity AT steinfrank extendednterminalacetyltransferasenaa50infilamentousfungiaddstonaa50diversity AT haberkantper extendednterminalacetyltransferasenaa50infilamentousfungiaddstonaa50diversity AT lapougekarine extendednterminalacetyltransferasenaa50infilamentousfungiaddstonaa50diversity AT sinningirmgard extendednterminalacetyltransferasenaa50infilamentousfungiaddstonaa50diversity |