Cargando…

Extended N-Terminal Acetyltransferase Naa50 in Filamentous Fungi Adds to Naa50 Diversity

Most eukaryotic proteins are N-terminally acetylated by a set of Nα acetyltransferases (NATs). This ancient and ubiquitous modification plays a fundamental role in protein homeostasis, while mutations are linked to human diseases and phenotypic defects. In particular, Naa50 features species-specific...

Descripción completa

Detalles Bibliográficos
Autores principales: Weidenhausen, Jonas, Kopp, Jürgen, Ruger-Herreros, Carmen, Stein, Frank, Haberkant, Per, Lapouge, Karine, Sinning, Irmgard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9500918/
https://www.ncbi.nlm.nih.gov/pubmed/36142717
http://dx.doi.org/10.3390/ijms231810805
_version_ 1784795341408698368
author Weidenhausen, Jonas
Kopp, Jürgen
Ruger-Herreros, Carmen
Stein, Frank
Haberkant, Per
Lapouge, Karine
Sinning, Irmgard
author_facet Weidenhausen, Jonas
Kopp, Jürgen
Ruger-Herreros, Carmen
Stein, Frank
Haberkant, Per
Lapouge, Karine
Sinning, Irmgard
author_sort Weidenhausen, Jonas
collection PubMed
description Most eukaryotic proteins are N-terminally acetylated by a set of Nα acetyltransferases (NATs). This ancient and ubiquitous modification plays a fundamental role in protein homeostasis, while mutations are linked to human diseases and phenotypic defects. In particular, Naa50 features species-specific differences, as it is inactive in yeast but active in higher eukaryotes. Together with NatA, it engages in NatE complex formation for cotranslational acetylation. Here, we report Naa50 homologs from the filamentous fungi Chaetomium thermophilum and Neurospora crassa with significant N- and C-terminal extensions to the conserved GNAT domain. Structural and biochemical analyses show that CtNaa50 shares the GNAT structure and substrate specificity with other homologs. However, in contrast to previously analyzed Naa50 proteins, it does not form NatE. The elongated N-terminus increases Naa50 thermostability and binds to dynein light chain protein 1, while our data suggest that conserved positive patches in the C-terminus allow for ribosome binding independent of NatA. Our study provides new insights into the many facets of Naa50 and highlights the diversification of NATs during evolution.
format Online
Article
Text
id pubmed-9500918
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-95009182022-09-24 Extended N-Terminal Acetyltransferase Naa50 in Filamentous Fungi Adds to Naa50 Diversity Weidenhausen, Jonas Kopp, Jürgen Ruger-Herreros, Carmen Stein, Frank Haberkant, Per Lapouge, Karine Sinning, Irmgard Int J Mol Sci Article Most eukaryotic proteins are N-terminally acetylated by a set of Nα acetyltransferases (NATs). This ancient and ubiquitous modification plays a fundamental role in protein homeostasis, while mutations are linked to human diseases and phenotypic defects. In particular, Naa50 features species-specific differences, as it is inactive in yeast but active in higher eukaryotes. Together with NatA, it engages in NatE complex formation for cotranslational acetylation. Here, we report Naa50 homologs from the filamentous fungi Chaetomium thermophilum and Neurospora crassa with significant N- and C-terminal extensions to the conserved GNAT domain. Structural and biochemical analyses show that CtNaa50 shares the GNAT structure and substrate specificity with other homologs. However, in contrast to previously analyzed Naa50 proteins, it does not form NatE. The elongated N-terminus increases Naa50 thermostability and binds to dynein light chain protein 1, while our data suggest that conserved positive patches in the C-terminus allow for ribosome binding independent of NatA. Our study provides new insights into the many facets of Naa50 and highlights the diversification of NATs during evolution. MDPI 2022-09-16 /pmc/articles/PMC9500918/ /pubmed/36142717 http://dx.doi.org/10.3390/ijms231810805 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Weidenhausen, Jonas
Kopp, Jürgen
Ruger-Herreros, Carmen
Stein, Frank
Haberkant, Per
Lapouge, Karine
Sinning, Irmgard
Extended N-Terminal Acetyltransferase Naa50 in Filamentous Fungi Adds to Naa50 Diversity
title Extended N-Terminal Acetyltransferase Naa50 in Filamentous Fungi Adds to Naa50 Diversity
title_full Extended N-Terminal Acetyltransferase Naa50 in Filamentous Fungi Adds to Naa50 Diversity
title_fullStr Extended N-Terminal Acetyltransferase Naa50 in Filamentous Fungi Adds to Naa50 Diversity
title_full_unstemmed Extended N-Terminal Acetyltransferase Naa50 in Filamentous Fungi Adds to Naa50 Diversity
title_short Extended N-Terminal Acetyltransferase Naa50 in Filamentous Fungi Adds to Naa50 Diversity
title_sort extended n-terminal acetyltransferase naa50 in filamentous fungi adds to naa50 diversity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9500918/
https://www.ncbi.nlm.nih.gov/pubmed/36142717
http://dx.doi.org/10.3390/ijms231810805
work_keys_str_mv AT weidenhausenjonas extendednterminalacetyltransferasenaa50infilamentousfungiaddstonaa50diversity
AT koppjurgen extendednterminalacetyltransferasenaa50infilamentousfungiaddstonaa50diversity
AT rugerherreroscarmen extendednterminalacetyltransferasenaa50infilamentousfungiaddstonaa50diversity
AT steinfrank extendednterminalacetyltransferasenaa50infilamentousfungiaddstonaa50diversity
AT haberkantper extendednterminalacetyltransferasenaa50infilamentousfungiaddstonaa50diversity
AT lapougekarine extendednterminalacetyltransferasenaa50infilamentousfungiaddstonaa50diversity
AT sinningirmgard extendednterminalacetyltransferasenaa50infilamentousfungiaddstonaa50diversity