Cargando…
Importance of Meteorological Parameters and Airborne Conidia to Predict Risk of Alternaria on a Potato Crop Ambient Using Machine Learning Algorithms
Secondary infections of early blight during potato crop season are conditioned by aerial inoculum. However, although aerobiological studies have focused on understanding the key factors that influence the spore concentration in the air, less work has been carried out to predict when critical concent...
Autores principales: | Meno, Laura, Escuredo, Olga, Abuley, Isaac Kwesi, Seijo, María Carmen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9500921/ https://www.ncbi.nlm.nih.gov/pubmed/36146412 http://dx.doi.org/10.3390/s22187063 |
Ejemplares similares
-
Predicting Daily Aerobiological Risk Level of Potato Late Blight Using C5.0 and Random Forest Algorithms under Field Conditions
por: Meno, Laura, et al.
Publicado: (2023) -
Airborne Alt a 1 Dynamic and Its Relationship with the Airborne Dynamics of Alternaria Conidia and Pleosporales Spores
por: De Linares, Concepción, et al.
Publicado: (2022) -
Rapid Estimation of Potato Quality Parameters by a Portable Near-Infrared Spectroscopy Device
por: Escuredo, Olga, et al.
Publicado: (2021) -
Comparison of methodologies for conidia production by Alternaria alternata from citrus
por: Carvalho, Daniel D. C., et al.
Publicado: (2008) -
Prediction of Physicochemical Properties in Honeys with Portable Near-Infrared (microNIR) Spectroscopy Combined with Multivariate Data Processing
por: Escuredo, Olga, et al.
Publicado: (2021)