Cargando…
Prevalence of and Risk Factors for Iron Deficiency in Twin and Singleton Newborns
Iron deficiency (ID) in utero and in infancy can cause irreversible neurocognitive damage. Iron status is not routinely tested at birth, so the burden of neonatal ID in the United States is unknown. Infants born from twin or higher-order pregnancies may be at elevated risk of inadequate nutrient end...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9500937/ https://www.ncbi.nlm.nih.gov/pubmed/36145230 http://dx.doi.org/10.3390/nu14183854 |
Sumario: | Iron deficiency (ID) in utero and in infancy can cause irreversible neurocognitive damage. Iron status is not routinely tested at birth, so the burden of neonatal ID in the United States is unknown. Infants born from twin or higher-order pregnancies may be at elevated risk of inadequate nutrient endowment at birth. The present study sought to compare the burden of neonatal ID in cord blood serum samples from twin (n = 54) and singleton pregnancies (n = 24). Iron status (serum ferritin (SF), soluble transferrin receptor (sTfR), hepcidin) and inflammation (C-reactive protein (CRP) and interleukin-6 (IL-6)) biomarker concentrations were measured by immunoassay. The prevalence of ID (SF < 76 ng/mL) among twins was 21% (23/108) and among singletons 20% (5/24). Gestational age at birth, maternal race and infant sex predicted SF levels. Maternal anemia (hemoglobin < 11 g/dL) was observed in 40% of mothers but was not associated with neonatal iron biomarkers. More research is needed to identify risk factors and regulatory mechanisms for inadequate fetal iron accrual to identify higher risk pregnancies and neonates for screening and intervention. |
---|