Cargando…

Interaction of Shock Waves with Water Saturated by Nonreacting or Reacting Gas Bubbles

A compressible medium represented by pure water saturated by small nonreactive or reactive gas bubbles can be used for generating a propulsive force in large-, medium-, and small-scale thrusters referred to as a pulsed detonation hydroramjet (PDH), which is a novel device for underwater propulsion....

Descripción completa

Detalles Bibliográficos
Autores principales: Frolov, Sergey M., Avdeev, Konstantin A., Aksenov, Viktor S., Sadykov, Illias A., Shamshin, Igor O., Frolov, Fedor S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9500947/
https://www.ncbi.nlm.nih.gov/pubmed/36144176
http://dx.doi.org/10.3390/mi13091553
_version_ 1784795348835762176
author Frolov, Sergey M.
Avdeev, Konstantin A.
Aksenov, Viktor S.
Sadykov, Illias A.
Shamshin, Igor O.
Frolov, Fedor S.
author_facet Frolov, Sergey M.
Avdeev, Konstantin A.
Aksenov, Viktor S.
Sadykov, Illias A.
Shamshin, Igor O.
Frolov, Fedor S.
author_sort Frolov, Sergey M.
collection PubMed
description A compressible medium represented by pure water saturated by small nonreactive or reactive gas bubbles can be used for generating a propulsive force in large-, medium-, and small-scale thrusters referred to as a pulsed detonation hydroramjet (PDH), which is a novel device for underwater propulsion. The PDH thrust is produced due to the acceleration of bubbly water (BW) in a water guide by periodic shock waves (SWs) and product gas jets generated by pulsed detonations of a fuel–oxidizer mixture. Theoretically, the PDH thrust is proportional to the operation frequency, which depends on both the SW velocity in BW and pulsed detonation frequency. The studies reported in this manuscript were aimed at exploring two possible directions of the improvement of thruster performances, namely, (1) the replacement of chemically nonreacting gas bubbles by chemically reactive ones, and (2) the increase in the pulsed detonation frequency from tens of hertz to some kilohertz. To better understand the SW-to-BW momentum transfer, the interaction of a single SW and a high-frequency (≈7 kHz) sequence of three SWs with chemically inert or active BW containing bubbles of air or stoichiometric acetylene–oxygen mixture was studied experimentally. Single SWs and SW packages were generated by burning or detonating a gaseous stoichiometric acetylene–oxygen or propane–oxygen mixture and transmitting the arising SWs to BW. The initial volume fraction of gas in BW was varied from 2% to 16% with gas bubbles 1.5–4 mm in diameter. The propagation velocity of SWs in BW ranged from 40 to 580 m/s. In experiments with single SWs in chemically active BW, a detonation-like mode of reaction front propagation (“bubbly quasidetonation”) was realized. This mode consisted of a SW followed by the front of bubble explosions and was characterized by a considerably higher propagation velocity as compared to the chemically inert BW. The latter could allow increasing the PDH operation frequency and thrust. Experiments with high-frequency SW packages showed that on the one hand, the individual SWs quickly merged, feeding each other and increasing the BW velocity, but on the other hand, the initial gas content for each successive SW decreased and, accordingly, the SW-to-BW momentum transfer worsened. Estimates showed that for a small-scale water guide 0.5 m long, the optimal pulsed detonation frequency was about 50–60 Hz.
format Online
Article
Text
id pubmed-9500947
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-95009472022-09-24 Interaction of Shock Waves with Water Saturated by Nonreacting or Reacting Gas Bubbles Frolov, Sergey M. Avdeev, Konstantin A. Aksenov, Viktor S. Sadykov, Illias A. Shamshin, Igor O. Frolov, Fedor S. Micromachines (Basel) Article A compressible medium represented by pure water saturated by small nonreactive or reactive gas bubbles can be used for generating a propulsive force in large-, medium-, and small-scale thrusters referred to as a pulsed detonation hydroramjet (PDH), which is a novel device for underwater propulsion. The PDH thrust is produced due to the acceleration of bubbly water (BW) in a water guide by periodic shock waves (SWs) and product gas jets generated by pulsed detonations of a fuel–oxidizer mixture. Theoretically, the PDH thrust is proportional to the operation frequency, which depends on both the SW velocity in BW and pulsed detonation frequency. The studies reported in this manuscript were aimed at exploring two possible directions of the improvement of thruster performances, namely, (1) the replacement of chemically nonreacting gas bubbles by chemically reactive ones, and (2) the increase in the pulsed detonation frequency from tens of hertz to some kilohertz. To better understand the SW-to-BW momentum transfer, the interaction of a single SW and a high-frequency (≈7 kHz) sequence of three SWs with chemically inert or active BW containing bubbles of air or stoichiometric acetylene–oxygen mixture was studied experimentally. Single SWs and SW packages were generated by burning or detonating a gaseous stoichiometric acetylene–oxygen or propane–oxygen mixture and transmitting the arising SWs to BW. The initial volume fraction of gas in BW was varied from 2% to 16% with gas bubbles 1.5–4 mm in diameter. The propagation velocity of SWs in BW ranged from 40 to 580 m/s. In experiments with single SWs in chemically active BW, a detonation-like mode of reaction front propagation (“bubbly quasidetonation”) was realized. This mode consisted of a SW followed by the front of bubble explosions and was characterized by a considerably higher propagation velocity as compared to the chemically inert BW. The latter could allow increasing the PDH operation frequency and thrust. Experiments with high-frequency SW packages showed that on the one hand, the individual SWs quickly merged, feeding each other and increasing the BW velocity, but on the other hand, the initial gas content for each successive SW decreased and, accordingly, the SW-to-BW momentum transfer worsened. Estimates showed that for a small-scale water guide 0.5 m long, the optimal pulsed detonation frequency was about 50–60 Hz. MDPI 2022-09-19 /pmc/articles/PMC9500947/ /pubmed/36144176 http://dx.doi.org/10.3390/mi13091553 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Frolov, Sergey M.
Avdeev, Konstantin A.
Aksenov, Viktor S.
Sadykov, Illias A.
Shamshin, Igor O.
Frolov, Fedor S.
Interaction of Shock Waves with Water Saturated by Nonreacting or Reacting Gas Bubbles
title Interaction of Shock Waves with Water Saturated by Nonreacting or Reacting Gas Bubbles
title_full Interaction of Shock Waves with Water Saturated by Nonreacting or Reacting Gas Bubbles
title_fullStr Interaction of Shock Waves with Water Saturated by Nonreacting or Reacting Gas Bubbles
title_full_unstemmed Interaction of Shock Waves with Water Saturated by Nonreacting or Reacting Gas Bubbles
title_short Interaction of Shock Waves with Water Saturated by Nonreacting or Reacting Gas Bubbles
title_sort interaction of shock waves with water saturated by nonreacting or reacting gas bubbles
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9500947/
https://www.ncbi.nlm.nih.gov/pubmed/36144176
http://dx.doi.org/10.3390/mi13091553
work_keys_str_mv AT frolovsergeym interactionofshockwaveswithwatersaturatedbynonreactingorreactinggasbubbles
AT avdeevkonstantina interactionofshockwaveswithwatersaturatedbynonreactingorreactinggasbubbles
AT aksenovviktors interactionofshockwaveswithwatersaturatedbynonreactingorreactinggasbubbles
AT sadykovilliasa interactionofshockwaveswithwatersaturatedbynonreactingorreactinggasbubbles
AT shamshinigoro interactionofshockwaveswithwatersaturatedbynonreactingorreactinggasbubbles
AT frolovfedors interactionofshockwaveswithwatersaturatedbynonreactingorreactinggasbubbles