Cargando…
Efficient Matching-Based Parallel Task Offloading in IoT Networks
Fog computing is one of the major components of future 6G networks. It can provide fast computing of different application-related tasks and improve system reliability due to better decision-making. Parallel offloading, in which a task is split into several sub-tasks and transmitted to different fog...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9500985/ https://www.ncbi.nlm.nih.gov/pubmed/36146254 http://dx.doi.org/10.3390/s22186906 |
Sumario: | Fog computing is one of the major components of future 6G networks. It can provide fast computing of different application-related tasks and improve system reliability due to better decision-making. Parallel offloading, in which a task is split into several sub-tasks and transmitted to different fog nodes for parallel computation, is a promising concept in task offloading. Parallel offloading suffers from challenges such as sub-task splitting and mapping of sub-tasks to the fog nodes. In this paper, we propose a novel many-to-one matching-based algorithm for the allocation of sub-tasks to fog nodes. We develop preference profiles for IoT nodes and fog nodes to reduce the task computation delay. We also propose a technique to address the externalities problem in the matching algorithm that is caused by the dynamic preference profiles. Furthermore, a detailed evaluation of the proposed technique is presented to show the benefits of each feature of the algorithm. Simulation results show that the proposed matching-based offloading technique outperforms other available techniques from the literature and improves task latency by 52% at high task loads. |
---|