Cargando…
Fabrication of P/N/B-Based Intumescent Flame-Retardant Coating for Polyester/Cotton Blend Fabric
Polyester/cotton (T/C) blend fabrics are highly flammable due to the particular “scaffolding effect”. In this work, an intumescent flame retardant (IFR) agent containing P, N, and B was designed and synthesized using bio-based phytic acid, pentaerythritol, boric acid, and urea. The IFR compounds wer...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9501000/ https://www.ncbi.nlm.nih.gov/pubmed/36143732 http://dx.doi.org/10.3390/ma15186420 |
Sumario: | Polyester/cotton (T/C) blend fabrics are highly flammable due to the particular “scaffolding effect”. In this work, an intumescent flame retardant (IFR) agent containing P, N, and B was designed and synthesized using bio-based phytic acid, pentaerythritol, boric acid, and urea. The IFR compounds were deposited onto a T/C blend fabric by the surface-coating route. The chemical structure of IFR agent and its potential cross-linking reactions with T/C fibers were characterized. The morphology, thermal stability, heat-release ability, flame retardancy, and mechanism of coated T/C blend fabrics were explored. The self-extinguishing action was observed for the coated T/C blend fabric with a weight gain of 13.7%; the limiting oxygen index (LOI) value increased to 27.1% versus 16.9% for a pristine one. Furthermore, the intumescent flame retardant (IFR) coating imparted T/C blend fabrics with high thermal stability and significantly suppressed heat release by nearly 50%. The char residue analyses on morphology and element content confirmed the intumescent FR action for coated T/C blend fabrics. The prepared IFR coating has great potential to serve as an eco-friendly approach for improving the flame retardancy of T/C blend textiles. |
---|