Cargando…

Efficiency of Natural Deep Eutectic Solvents to Extract Phenolic Compounds from Agrimonia eupatoria: Experimental Study and In Silico Modelling

To replace common organic solvents that present inherent toxicity and have high volatility and to improve the extraction efficiency, a range of natural deep eutectic solvents (NADESs) were evaluated for the extraction of phenolic compounds from Agrimonia eupatoria. Screening of NADES efficiency was...

Descripción completa

Detalles Bibliográficos
Autores principales: Lazović, Mila, Cvijetić, Ilija, Jankov, Milica, Milojković-Opsenica, Dušanka, Trifković, Jelena, Ristivojević, Petar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9501009/
https://www.ncbi.nlm.nih.gov/pubmed/36145749
http://dx.doi.org/10.3390/plants11182346
Descripción
Sumario:To replace common organic solvents that present inherent toxicity and have high volatility and to improve the extraction efficiency, a range of natural deep eutectic solvents (NADESs) were evaluated for the extraction of phenolic compounds from Agrimonia eupatoria. Screening of NADES efficiency was carried out based on the total phenolic and flavonoid content and radical-scavenging activity, determined by spectrophotometry, as well as phenolic compounds quantified, obtained using ultra-high-performance liquid chromatography with a diode array detector and a triple-quadrupole mass spectrometer. Increased extraction efficiency when compared with organic solvent was achieved using NADES mixtures choline chloride (ChCl):urea 1:2 and choline chloride:glycerol 1:1. Flavonol glycosides were the most abundant compounds in all extracts. The COSMO-RS model provided insights into the most important intermolecular interactions that drive the extraction process. Moreover, it could explain the extraction efficiency of flavonol glycosides using ChCl:glycerol NADES. The current article offers experimental evidence and mechanistic insights for the selection of optimal NADES to extract bioactive components from Agrimonia eupatoria.