Cargando…
Towards More Accurate and Complete Heterogeneous Iris Segmentation Using a Hybrid Deep Learning Approach
Accurate iris segmentation is a crucial preprocessing stage for computer-aided ophthalmic disease diagnosis. The quality of iris images taken under different camera sensors varies greatly, and thus accurate segmentation of heterogeneous iris databases is a huge challenge. At present, network archite...
Autores principales: | Meng, Yuan, Bao, Tie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9501181/ https://www.ncbi.nlm.nih.gov/pubmed/36135411 http://dx.doi.org/10.3390/jimaging8090246 |
Ejemplares similares
-
Deep Iris: Deep Learning for Gender Classification Through Iris Patterns
por: Khalifa, Nour Eldeen M., et al.
Publicado: (2019) -
Self-Supervised Learning Framework toward State-of-the-Art Iris Image Segmentation
por: Putri, Wenny Ramadha, et al.
Publicado: (2022) -
Iris Recognition Method Based on Parallel Iris Localization Algorithm and Deep Learning Iris Verification
por: Wei, Yinyin, et al.
Publicado: (2022) -
Deep Learning for Anterior Segment Optical Coherence Tomography to Predict the Presence of Plateau Iris
por: Wanichwecharungruang, Boonsong, et al.
Publicado: (2021) -
Burn image segmentation based on Mask Regions with Convolutional Neural Network deep learning framework: more accurate and more convenient
por: Jiao, Chong, et al.
Publicado: (2019)