Cargando…
Amphiphysin AoRvs167-Mediated Membrane Curvature Facilitates Trap Formation, Endocytosis, and Stress Resistance in Arthrobotrys oligospora
Bin1/Amphiphysin/Rvs (BAR) domain-containing proteins mediate fundamental cellular processes, including membrane remodeling and endocytosis. Nematode-trapping (NT) fungi can differentiate to form trapping structures through highly reorganized cell membranes and walls. In this study, we identified th...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9501185/ https://www.ncbi.nlm.nih.gov/pubmed/36145429 http://dx.doi.org/10.3390/pathogens11090997 |
Sumario: | Bin1/Amphiphysin/Rvs (BAR) domain-containing proteins mediate fundamental cellular processes, including membrane remodeling and endocytosis. Nematode-trapping (NT) fungi can differentiate to form trapping structures through highly reorganized cell membranes and walls. In this study, we identified the NT fungus Arthrobotrys oligospora ortholog of yeast Rvs167 and documented its involvement in membrane bending and endocytosis. We further confirmed that the deletion of AoRvs167 makes the fungus more hypersensitive to osmotic salt (Nacl), higher temperatures (28 to 30 °C), and the cell wall perturbation agent Congo red. In addition, the disruption of AoRvs167 reduced the trap formation capacity. Hence, AoRvs167 may regulate fungal pathogenicity through the integrity of plasma membranes and cell walls. |
---|