Cargando…
A Radio Environment Map Updating Mechanism Based on an Attention Mechanism and Siamese Neural Networks
A radio environment map (REM) is an effective spectrum management tool. With the increase in the number of mobile devices, the wireless environment changes more and more frequently, bringing new challenges to REM updates. Traditional update methods usually rely on the amount of data collected for up...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9501223/ https://www.ncbi.nlm.nih.gov/pubmed/36146150 http://dx.doi.org/10.3390/s22186797 |
_version_ | 1784795421091037184 |
---|---|
author | Zhen, Pan Zhang, Bangning Xie, Chen Guo, Daoxing |
author_facet | Zhen, Pan Zhang, Bangning Xie, Chen Guo, Daoxing |
author_sort | Zhen, Pan |
collection | PubMed |
description | A radio environment map (REM) is an effective spectrum management tool. With the increase in the number of mobile devices, the wireless environment changes more and more frequently, bringing new challenges to REM updates. Traditional update methods usually rely on the amount of data collected for updating without paying attention to whether the wireless environment has changed enough. In particular, a waste of computational resources results from the frequently updated REM when the wireless environment does not change much. When the wireless environment changes a lot, the REM is not updated promptly, resulting in a decrease in REM accuracy. To overcome the above problems, this work combines the Siamese neural network and an attention mechanism in computer vision and proposes an update mechanism based on the amount of wireless environmental change starting from image data. The method compares the newly collected crowdsourced data with the constructed REM in terms of similarity. It uses similarity to measure the necessity of the REM to be updated. The algorithm in this paper can achieve a controlled update by setting a similarity threshold with good controllability. In addition, the effectiveness of the algorithm in detecting changes of the wireless environment has been demonstrated by combing simulation data. |
format | Online Article Text |
id | pubmed-9501223 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95012232022-09-24 A Radio Environment Map Updating Mechanism Based on an Attention Mechanism and Siamese Neural Networks Zhen, Pan Zhang, Bangning Xie, Chen Guo, Daoxing Sensors (Basel) Article A radio environment map (REM) is an effective spectrum management tool. With the increase in the number of mobile devices, the wireless environment changes more and more frequently, bringing new challenges to REM updates. Traditional update methods usually rely on the amount of data collected for updating without paying attention to whether the wireless environment has changed enough. In particular, a waste of computational resources results from the frequently updated REM when the wireless environment does not change much. When the wireless environment changes a lot, the REM is not updated promptly, resulting in a decrease in REM accuracy. To overcome the above problems, this work combines the Siamese neural network and an attention mechanism in computer vision and proposes an update mechanism based on the amount of wireless environmental change starting from image data. The method compares the newly collected crowdsourced data with the constructed REM in terms of similarity. It uses similarity to measure the necessity of the REM to be updated. The algorithm in this paper can achieve a controlled update by setting a similarity threshold with good controllability. In addition, the effectiveness of the algorithm in detecting changes of the wireless environment has been demonstrated by combing simulation data. MDPI 2022-09-08 /pmc/articles/PMC9501223/ /pubmed/36146150 http://dx.doi.org/10.3390/s22186797 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhen, Pan Zhang, Bangning Xie, Chen Guo, Daoxing A Radio Environment Map Updating Mechanism Based on an Attention Mechanism and Siamese Neural Networks |
title | A Radio Environment Map Updating Mechanism Based on an Attention Mechanism and Siamese Neural Networks |
title_full | A Radio Environment Map Updating Mechanism Based on an Attention Mechanism and Siamese Neural Networks |
title_fullStr | A Radio Environment Map Updating Mechanism Based on an Attention Mechanism and Siamese Neural Networks |
title_full_unstemmed | A Radio Environment Map Updating Mechanism Based on an Attention Mechanism and Siamese Neural Networks |
title_short | A Radio Environment Map Updating Mechanism Based on an Attention Mechanism and Siamese Neural Networks |
title_sort | radio environment map updating mechanism based on an attention mechanism and siamese neural networks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9501223/ https://www.ncbi.nlm.nih.gov/pubmed/36146150 http://dx.doi.org/10.3390/s22186797 |
work_keys_str_mv | AT zhenpan aradioenvironmentmapupdatingmechanismbasedonanattentionmechanismandsiameseneuralnetworks AT zhangbangning aradioenvironmentmapupdatingmechanismbasedonanattentionmechanismandsiameseneuralnetworks AT xiechen aradioenvironmentmapupdatingmechanismbasedonanattentionmechanismandsiameseneuralnetworks AT guodaoxing aradioenvironmentmapupdatingmechanismbasedonanattentionmechanismandsiameseneuralnetworks AT zhenpan radioenvironmentmapupdatingmechanismbasedonanattentionmechanismandsiameseneuralnetworks AT zhangbangning radioenvironmentmapupdatingmechanismbasedonanattentionmechanismandsiameseneuralnetworks AT xiechen radioenvironmentmapupdatingmechanismbasedonanattentionmechanismandsiameseneuralnetworks AT guodaoxing radioenvironmentmapupdatingmechanismbasedonanattentionmechanismandsiameseneuralnetworks |