Cargando…
A Preconditioning Paradox: Contrasting Effects of Initial Phyllosphere and Early Leaf Decomposer Microfungi on Subsequent Colonization by Leaf Decomposing Non-Unit-Restricted Basidiomycetes
Fungal interactions during leaf decomposition can facilitate or inhibit other fungi. This experiment focused on whether preconditioning of leaf litter by microfungi that were confined to one leaf (Unit-Restricted) made leaf litter less likely to be colonized and decomposed by basidiomycetes that bin...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9501227/ https://www.ncbi.nlm.nih.gov/pubmed/36135628 http://dx.doi.org/10.3390/jof8090903 |
_version_ | 1784795422096621568 |
---|---|
author | Bibbo, Silvia Lodge, D. Jean |
author_facet | Bibbo, Silvia Lodge, D. Jean |
author_sort | Bibbo, Silvia |
collection | PubMed |
description | Fungal interactions during leaf decomposition can facilitate or inhibit other fungi. This experiment focused on whether preconditioning of leaf litter by microfungi that were confined to one leaf (Unit-Restricted) made leaf litter less likely to be colonized and decomposed by basidiomycetes that bind litter into mats (Non-Unit-Restricted) than non-preconditioned litter. Leaves of Manilkara bidentata in litterbags were preconditioned by incubating them for 0, 1, 2 or 3 months in flat litter/seed rain baskets 10 cm above the forest floor to avoid colonization by basidiomycete fungi. Preconditioned and non-preconditioned leaves were transferred to 5 replicate basidiomycete fungal mats of Gymnopus johnstonii for 6 weeks. Both attachment by basidiomycete fungi and percent mass loss after 6 weeks decreased significantly with increasing preconditioning time. In non-preconditioned leaves, gamma irradiation did not affect mass loss or percent white-rot despite having significantly increased numbers of basidiomycete fungal connections as compared to non-irradiated leaves. In non-preconditioned leaves, more basidiomycetes attachmented to non-irradiated than irradiated leaves suggest facilitation by phyllosphere microfungi. While basidiomycete colonization was initially facilitated by phyllosphere fungi, we inferred that degradation of resource quality led to fewer fungal attachments and less mass loss after 1–3 months of preconditioning by microfungi. The date suggest there is a 1-month time window for basidiomycete fungi to incorporate fallen leaves into their litter mats. |
format | Online Article Text |
id | pubmed-9501227 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-95012272022-09-24 A Preconditioning Paradox: Contrasting Effects of Initial Phyllosphere and Early Leaf Decomposer Microfungi on Subsequent Colonization by Leaf Decomposing Non-Unit-Restricted Basidiomycetes Bibbo, Silvia Lodge, D. Jean J Fungi (Basel) Article Fungal interactions during leaf decomposition can facilitate or inhibit other fungi. This experiment focused on whether preconditioning of leaf litter by microfungi that were confined to one leaf (Unit-Restricted) made leaf litter less likely to be colonized and decomposed by basidiomycetes that bind litter into mats (Non-Unit-Restricted) than non-preconditioned litter. Leaves of Manilkara bidentata in litterbags were preconditioned by incubating them for 0, 1, 2 or 3 months in flat litter/seed rain baskets 10 cm above the forest floor to avoid colonization by basidiomycete fungi. Preconditioned and non-preconditioned leaves were transferred to 5 replicate basidiomycete fungal mats of Gymnopus johnstonii for 6 weeks. Both attachment by basidiomycete fungi and percent mass loss after 6 weeks decreased significantly with increasing preconditioning time. In non-preconditioned leaves, gamma irradiation did not affect mass loss or percent white-rot despite having significantly increased numbers of basidiomycete fungal connections as compared to non-irradiated leaves. In non-preconditioned leaves, more basidiomycetes attachmented to non-irradiated than irradiated leaves suggest facilitation by phyllosphere microfungi. While basidiomycete colonization was initially facilitated by phyllosphere fungi, we inferred that degradation of resource quality led to fewer fungal attachments and less mass loss after 1–3 months of preconditioning by microfungi. The date suggest there is a 1-month time window for basidiomycete fungi to incorporate fallen leaves into their litter mats. MDPI 2022-08-25 /pmc/articles/PMC9501227/ /pubmed/36135628 http://dx.doi.org/10.3390/jof8090903 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bibbo, Silvia Lodge, D. Jean A Preconditioning Paradox: Contrasting Effects of Initial Phyllosphere and Early Leaf Decomposer Microfungi on Subsequent Colonization by Leaf Decomposing Non-Unit-Restricted Basidiomycetes |
title | A Preconditioning Paradox: Contrasting Effects of Initial Phyllosphere and Early Leaf Decomposer Microfungi on Subsequent Colonization by Leaf Decomposing Non-Unit-Restricted Basidiomycetes |
title_full | A Preconditioning Paradox: Contrasting Effects of Initial Phyllosphere and Early Leaf Decomposer Microfungi on Subsequent Colonization by Leaf Decomposing Non-Unit-Restricted Basidiomycetes |
title_fullStr | A Preconditioning Paradox: Contrasting Effects of Initial Phyllosphere and Early Leaf Decomposer Microfungi on Subsequent Colonization by Leaf Decomposing Non-Unit-Restricted Basidiomycetes |
title_full_unstemmed | A Preconditioning Paradox: Contrasting Effects of Initial Phyllosphere and Early Leaf Decomposer Microfungi on Subsequent Colonization by Leaf Decomposing Non-Unit-Restricted Basidiomycetes |
title_short | A Preconditioning Paradox: Contrasting Effects of Initial Phyllosphere and Early Leaf Decomposer Microfungi on Subsequent Colonization by Leaf Decomposing Non-Unit-Restricted Basidiomycetes |
title_sort | preconditioning paradox: contrasting effects of initial phyllosphere and early leaf decomposer microfungi on subsequent colonization by leaf decomposing non-unit-restricted basidiomycetes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9501227/ https://www.ncbi.nlm.nih.gov/pubmed/36135628 http://dx.doi.org/10.3390/jof8090903 |
work_keys_str_mv | AT bibbosilvia apreconditioningparadoxcontrastingeffectsofinitialphyllosphereandearlyleafdecomposermicrofungionsubsequentcolonizationbyleafdecomposingnonunitrestrictedbasidiomycetes AT lodgedjean apreconditioningparadoxcontrastingeffectsofinitialphyllosphereandearlyleafdecomposermicrofungionsubsequentcolonizationbyleafdecomposingnonunitrestrictedbasidiomycetes AT bibbosilvia preconditioningparadoxcontrastingeffectsofinitialphyllosphereandearlyleafdecomposermicrofungionsubsequentcolonizationbyleafdecomposingnonunitrestrictedbasidiomycetes AT lodgedjean preconditioningparadoxcontrastingeffectsofinitialphyllosphereandearlyleafdecomposermicrofungionsubsequentcolonizationbyleafdecomposingnonunitrestrictedbasidiomycetes |