Cargando…

Polyhydroxybutyrate Rice Hull and Torrefied Rice Hull Biocomposites

Raw and torrefied rice hulls (RRH and TRH) were incorporated into polyhydroxybutyrate (PHB) as fillers using extrusion and injection molding to produce biomass-polymer composites. Filler and composite materials were characterized by particle size analysis, thermomechanical analysis, thermogravimetri...

Descripción completa

Detalles Bibliográficos
Autores principales: McCaffrey, Zach, Cal, Andrew, Torres, Lennard, Chiou, Bor-Sen, Wood, Delilah, Williams, Tina, Orts, William
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9501343/
https://www.ncbi.nlm.nih.gov/pubmed/36146029
http://dx.doi.org/10.3390/polym14183882
Descripción
Sumario:Raw and torrefied rice hulls (RRH and TRH) were incorporated into polyhydroxybutyrate (PHB) as fillers using extrusion and injection molding to produce biomass-polymer composites. Filler and composite materials were characterized by particle size analysis, thermomechanical analysis, thermogravimetric analysis, differential scanning calorimetry, FTIR analysis, CHNSO analysis, and mechanical testing. Heat distortion temperature of the RRH composites were 16–22 °C higher than TRH composites. The RRH composite samples showed a 50–60% increase in flexural modulus and 5% increase in stress at yield compared to PHB, while TRH composite samples showed nearly equal flexural modulus and a 24% decrease in stress at yield. The improved mechanical properties of the RRH composites in comparison to TRH composites were due to better particle-matrix adhesion. FTIR analysis showed RRH particles contained more surface functional groups containing oxygen than TRH particles, indicating that RRHs should be more compatible with the polar PHB plastic. SEM images showed space between filler and plastic in TRH composites and better wetted filler particles in the RRH composites.