Cargando…
Graph Neural Network for Protein–Protein Interaction Prediction: A Comparative Study
Proteins are the fundamental biological macromolecules which underline practically all biological activities. Protein–protein interactions (PPIs), as they are known, are how proteins interact with other proteins in their environment to perform biological functions. Understanding PPIs reveals how cel...
Autores principales: | Zhou, Hang, Wang, Weikun, Jin, Jiayun, Zheng, Zengwei, Zhou, Binbin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9501426/ https://www.ncbi.nlm.nih.gov/pubmed/36144868 http://dx.doi.org/10.3390/molecules27186135 |
Ejemplares similares
-
Prediction of protein–protein interaction using graph neural networks
por: Jha, Kanchan, et al.
Publicado: (2022) -
Predicting lncRNA-protein interactions with bipartite graph embedding and deep graph neural networks
por: Ma, Yuzhou, et al.
Publicado: (2023) -
An inductive graph neural network model for compound–protein interaction prediction based on a homogeneous graph
por: Wan, Xiaozhe, et al.
Publicado: (2022) -
GCRNN: graph convolutional recurrent neural network for compound–protein interaction prediction
por: Elbasani, Ermal, et al.
Publicado: (2022) -
De novo prediction of RNA–protein interactions with graph neural networks
por: Arora, Viplove, et al.
Publicado: (2022)